

LOCAFI+

Temperature assessment of a vertical member subjected to LOCAlised FIre Dissemination

Grant Agreement n° 754072

1. Engenharia de Segurança Contra Incêndio: contexto legal e documentos de referência

Quais os documentos de referência em Portugal?

 Documentos desenvolvidos a nível nacional → definição dos requisitos e métodos de cálculo que podem ser utilizados

http://www.prociv.pt/pt-

pt/SEGCINCENDEDIF/SEGURANCACONTRAINCENDIOSEDIFICIOS/Paginas/default.aspx

Eurocódigo e Anexos Nacionais (NP EN 1991-1-2, NP EN 1992-1-2, NP EN 1993-1-2, NP EN 1994-1-2,...) → descrição dos métodos de cálculo

IPQ, Instituto Português da Qualidade

Abordagens de cálculo e modelos associados

Y

Estab	ilidade ao fogo de uma estr	utura		
Abordagem Estrutura	Prescritiva	Baseada no desempenho		
	Curva ISO 834	Fogo natural		
Elemento	<mark>Classificação</mark>	Engenharia de segurança estrutural ao fogo		
Parte da estrutura	Engenharia de segurança estrutural ao fogo	Engenharia de segurança estrutural ao fogo		

(extraído e modificado de ITM-SST 1551.1)

Abordagens de cálculo e modelos associados

Regulamentação Nacional de Segurança contra Incêndios em Edifícios (SCIE)

Regime Jurídico de Segurança contra Incêndio em Edifícios (Decreto Lei nº 220/2008)

Decreto-Lei n.º 224/2015 - primeira alteração ao Decreto -Lei n.º 220/2008, de 12 de novembro, que aprova o regime jurídico da segurança contra incêndio em edifícios

Regulamento Técnico de Segurança contra Incêndio em Edifícios (Portaria n.º 1532/2008)

Critérios técnicos para determinação da densidade de carga de incêndio modificada (Despacho n.º 2074/2009)

http://www.prociv.pt/pt-pt/SEGCINCENDEDIF/SEGURANCACONTRAINCENDIOSEDIFICIOS/Paginas/default.aspx

Qualificações de Resistência ao Fogo

□ Critérios de classificação

R – Resistência mecânica; E – Estanquidade; I – Isolamento térmico

- Apenas capacidade de carga: critério R
- Capacidade de carga e compartimentação: critério R, E e quando requerido, I

1. <u>Engenharia de segurança Contra Incêndio: Contexto legal e documentos de referência</u> Abordagem prescritiva: Para cada utilização tipo (habitacionais, estacionamento, administrativos, escolares...)

□ Os fatores de risco são, entre outros:

- Altura do último piso ocupado do edifício (h) acima do plano de referência
- Número de pisos abaixo do plano de referência (n)
- Área bruta ocupada
- Nº de ocupantes (efetivo)

Abordagem baseada no desempenho

 Abordagem baseada na definição de cenários de incêndio e tendo em conta parâmetros físicos: carga de incêndio, localização do fogo, dimensão do fogo, velocidade de propagação, condições de ventilação, características térmicas das paredes...

→ Os parâmetros físicos devem ser selecionados de forma a serem representativos dos cenários mais desfavoráveis!

- Abordagem probabilística tendo em conta a probabilidade de ocorrência de um incêndio e a presença de medidas ativas de combate ao fogo.
- A aplicação desta abordagem é o âmbito Regulamento Técnico de SCIE (Artigo 15°)

Regulamento Técnico de Segurança contra **Incêndio** em Edifícios (Portaria n.º 1532/2008)

Resistência ao fogo de elementos estruturais e incorporados (Capítulo I)

Resistência ao fogo de elementos estruturais (Artigo 15º)

Consoante o seu tipo, os elementos estruturais de edifícios devem possuir uma resistência ao fogo que garanta as suas funções de suporte de cargas, de isolamento térmico e de estanquidade durante todas as fases de combate ao incêndio, incluindo o rescaldo, ou, em alternativa, devem possuir a resistência ao fogo padrão mínima indicada no quadro abaixo:

QUADRO IX

Resistência ao fogo padrão mínima de elementos estruturais de edifícios								
Utilizações-tipo	1.*	2.ª	3.ª	4.ª	Função do elemento estrutural			
I, III, IV, V, VI, VII, VIII, IX e X	R 30 REI 30	R 60 REI 60	R 90 REI 90	R 120 REI 120	Apenas suporte. Suporte e compartimentação.			
II, XI e XII	R 60 REI 60	R 90 REI 90	R 120 REI 120	R 180 REI 180	Apenas suporte Suporte e compartimentação			

Regulamento Técnico de Segurança contra **Incêndio** em Edifícios (Portaria n.º 1532/2008)

Resistência ao fogo de elementos estruturais e incorporados (Capítulo I)

Resistência ao fogo de elementos estruturais (Artigo 15º)

Interação entre os efeitos locais e globais

- Os cenários de incêndio que não levam a uma conflagração generalizada devem ser analisados considerando os efeitos de incêndios localizados cuja posição levará aos efeitos mais desfavoráveis na estrutura.
- O Anexo C da NP EN 1991-1-2:2010 indica as expressões a utilizar para determinar a ação térmica de um incêndio localizado num elemento estrutural.

LOCAFI+

Temperature assessment of a vertical member subjected to LOCAlised FIre Dissemination

Grant Agreement n° 754072

2. Estado de arte e justificação do projeto

Estado de arte: Desenvolvimento de um incêndio

Chama (Energia de ativação) Oxigénio (Comburente)

Início do incêndio: Presença de três elementos simultaneamente

Fim do incêndio: Perda de oxigénio e/ou combustível

Madeira, Plástico, Gás... (Combustível)

Estado de arte: Desenvolvimento de um incêndio

<u>Fase 1</u>: Ignição do incêndio (incêndio localizado, possível ação dos bombeiros/sprinklers)

<u>Fase 2</u>: Desenvolvimento do incêndio (dependendo da ventilação, carga de incêndio,...) Entre 2 e 3: Flashover (de localizado a generalizado)

Fase 3: Incêndio totalmente desenvolvido

→ Tempo devido à perda de combustível)

Estado de arte: Curva de incêndio prescritiva

Estado de arte: Curva de incêndio baseada no desempenho

Estado de arte: Curva de incêndio baseada no desempenho

Passo 1: Divisão do edifício em compartimentos

Passo 2: Parâmetros físicos relacionados com a Ocupação

Ocupação	Taxa de crescimento de incêndio	RHR _f [kW/m²]	Carga de incêndio q _{f,k} quantilho de 80% [MJ/m ²]
Habitação	Média	250	948
Hospital (quarto)	Média	250	280
Hotel (quarto)	Média	250	377
Biblioteca	Rápida	500	1824
Escritório	Média	250	511
Escola	Média	250	347
Centro comercial	Rápida	250	730
Teatro (cinema)	Rápida	500	365
Transporte (espaço público)	Lenta	250	122

Estado de arte: Curva de incêndio baseada no desempenho

Passo 3: Perigo de ativação de incêndio

Área do pavimento do compartimento A _f [m ²]	Perigo de ativação de incêndio δ _{q1}	Exemplos de ocupações	Perigo de ativação de incêndio δ _{q2}
25	1.10	Galeria de arte, museu, piscina	0.78
250	1.50	Residência, hotel, escritório	1.00
2500	1.90	Fábrica de máquinas e motores	1.22
5000	2.00	Laboratório químico, oficina de pintura	1.44
10000	2.13	Fábrica de pirotecnia ou tintas	1.66

Passo 4: Medidas ativas

Sist. automático de extinção com água	Redes independentes de fornecimento de água 0 1 2	Deteção de incêndio Calor Fumo	Trans. de alarme	Bombeiros no local	Bombeiros fora do local	Vias de acesso seguras	Dispositivos de combate a incêndio	Sist. de exaustão de fumos
0.61	1.0 0.87 0.7	0.87 0.73	0.87	0.61	0.78	0.9 1.0 1.5	1.0 1.5	1.0 1.5

Estado de arte: Curva de incêndio baseada no desempenho

Passo 5: Cálculo da carga de incêndio

$$q_{f,d} = \delta_{q1} \cdot \delta_{q2} \cdot \prod \delta_{ni} \cdot m \cdot q_{f,k}$$

Passo 6: Diagrama RHR

Estado de arte: Incêndio localizado

Em algumas circunstâncias, a análise da estrutura segundo um incêndio natural não é suficiente nem totalmente realística:

- Compartimento muito grande (ou complexo)
- Incêndio controlado pela ventilação
- A carga de incêndio é localizada (parque de estacionamento)

Estado de arte: Incêndio localizado

Actualmente são disponibilizados dois modelos no Anexo C da NP EN1991-1-2:2010 para descrever os efeitos de um incêndio localizado numa estrutura:

para incêndios que não atingem o teto

para incêndios que atingem o teto

Para estruturas de parques de estacionamentos, foram utilizadas várias campanhas experimentais para validar o *modelo de Hasemi* como ferramenta de cálculo capaz de reproduzir com uma suficiente margem de segurança o campo de temperaturas em elementos estruturais horizontais causado pelo incêndio de carros.

Motivação para o projeto

Nesta situação, a temperatura da coluna é maioritariamente influenciada por fluxos de radiação. Mas como abordar isso?

Objetivos do Projeto LOCAFI

- Fornecer evidências científicas sobre a ação térmica imposta a uma coluna de aço rodeada por um incêndio localizado ou influenciada por um incêndio localizado a determinada distância da coluna (incluindo verificação das equações que fornecem a temperatura ao longo do eixo da fonte de incêndio);
- Fornecer equações de cálculo que permitam reproduzir esse ataque térmico tão bem como as temperaturas induzidas na coluna, publicação dessas equações e implementação em software existente (OZone, SAFIR,...);
- Fornecer regras que constituam as bases das equações de cálculo de forma a serem implementadas nos Eurocódigos, fazendo com que os modelos sejam automaticamente aceites sem nenhuma discussão das autoridades dos diferentes Estados Membros.

LOCAFI+

Temperature assessment of a vertical member subjected to LOCAlised FIre Dissemination

Grant Agreement n° 754072

3. Ensaios experimentais e calibração CFD

Ensaios realizados na Universidade de Liège

Caracterização dos fluxos de calor recebidos por elementos envolvidos pelo incêndio

- Foram realizados 24 testes na Universidade de Liège variando:
 - O diâmetro do incêndio (5 *diâmetros:* 0.6*m*, 1.0*m*, 1.4*m*, 1.8*m* e 2.2*m*)
 - O tipo de combustível (2 combustíveis líquidos diferentes (diesel e N-heptano) + 1 carga de incêndio celulosa)
 - A presença de uma coluna envolvida pelo incêndio
- Para cada diâmetro e para os dois combustíveis líquidos:
 - Um teste sem coluna no incêndio
 - Um teste com uma coluna no centro da fonte de incêndio

Ensaios realizados na Universidade de Liège

Configuração geral do teste

- Foram colocados dois tanques preenchidos com heptano e diesel a uma altura superior à altura do pavimento permitindo o escoamento do combustível por gravidade;
- A Taxa de Libertação de Calor da piscina de fogo foi controlada ajustando-se a descarga de combustível injetado através de uma válvula manual;
- O recipiente foi continuamente preenchido com água fria de forma a arrefecer a camada abaixo do combustível de queima, possibilitando assim um regime de incêndio mais estável evitando a ebulição da água.

Ensaios realizados na Universidade de Liège

Medições experimentais: comprimento da chama

O comprimento de chama médio L é a distância acima da fonte de incêndio onde a intermitência decai para 0.5, sendo a intermitência I(z) definida como a fração de tempo em que a chama está acima da fonte de incêndio. Esta avaliação foi realizada através de análise de imagens digitais.

A diferença entre o comprimento de chama experimental e o comprimento de chama previsto por Heskestad é cerca de +30% e -30% mas isto está de acordo com outras investigações de piscina de fogo e sobretudo devido à incerteza relacionada com a eficiência da combustão e com a densidade do combustível.

N. Tondini, J.M. Franssen, "Analysis of experimental hydrocarbon localised fires with and without engulfed steel members", Fire Safety Journal 92 (2017), 9-22

Ensaios realizados na Universidade de Liège

Medições experimentais: temperatura e fluxos

- Os testes são realizados até se atingir uma configuração estacionária (as medições da temperatura dos gases e dos fluxos de calor por radiação são estabilizados);
- De acordo com a configuração das colunas de aço, os termopares também fornecem a evolução da temperatura do aço.

Ensaios realizados na Universidade de Liège

Medições experimentais: temperatura e fluxos

A correlação de Heskestad (NP EN 1991-1-2:2010) sobredimensiona as temperaturas da chama ($\theta_g \ge 500^{\circ}$ C) e da pluma ($\theta_g < 500^{\circ}$ C)

Ensaios realizados na Universidade de Liège

Medições experimentais: temperatura e fluxos

A correlação da NP EN 1991-1-2:2010 fornece uma boa avaliação da temperatura tanto da chama ($\theta_g \ge 500^{\circ}$ C) como da pluma ($\theta_g < 500^{\circ}$ C).

Ensaios realizados na Universidade de Ulster

Caracterização dos fluxos de calor recebidos por elementos exteriores ao

incêndio

- Foram realizados 58 testes na Universidade de Ulster variando:
 - A presença ou não de teto (37 testes sem / 21 testes com)
 - O número de incêndios (*de 1 a 4*) e o seu diâmetro (2 *diâmetros:* 0.7m e 1.6m)
 - O tipo de combustível (2 *combustíveis líquidos diferentes (diesel e querosene)* + 1 *carga de incêndio celulosa*)
- A estrutura de 9mx9m é composta por três tipos de colunas (*secções em I, secções em H e secções em O*)
- A HRR variou com o tempo (não controlada) e foi medida por um calorímetro
- O comprimento de chama é avaliado utilizando uma câmara e com base na probabilidade da presença da chama

Ensaios realizados na Universidade de Ulster

Medições experimentais: temperatura da chama

ALTURA	ENSAIOS O8, 19 (QUEROSENE, D 1.6 m)		ENSAIOS O10 (DIESEL, D 1.6 m)		ENSAIOS O1, O2 (QUEROSENE, D 0.7 m)		ENSAIOS O3,O4 (DIESEL, D 0.7 m)		ENSAIO O14 (GRADES DE MADEIRA)	
	EN	ENSAIO	EN	ENSAIO	EN	ENSAIO	EN	ENSAIO	EN	ENSAIO
1 m	900	949	900	899	900	686	900	652	900	527
2 m	900	810	900	660	845	223	697	208	900	440
3 m	900	515	900	339	381	90	325	89	640	317
4 m	730	312	663	235	228	-	198	-	391	185
5 m	479	179	440	146	157	-	139	-	271	159

Estes testes confirmam que a correlação de Heskestad (NP EN 1991-1-2:2010) sobredimensiona as temperaturas tanto da chama ($\theta_g \ge 500^{\circ}$ C) como da pluma ($\theta_g < 500^{\circ}$ C).

Ensaios realizados na Universidade de Ulster

Medições experimentais: temperatura e fluxos fora do incêndio

Ensaios realizados na Universidade de Ulster

Medições experimentais: resultados obtidos através do teste O8

- Número de piscinas: 1
- Diâmetro da piscina: 1.6 m
- Tipo de combustível: Querosene
- Quantidade de combustível: 60 L
- Distância coluna-piscina: 0 m
- Distância medidores-coluna: 1.5m
- Sem teto

Calibração de um modelo CFD utilizando software FDS Objetivos

- O número de testes é limitado e as medições realizadas durante esses testes também são limitadas.
- Devido à dimensão do edifício/laboratório onde os testes experimentais foram realizados, não foi possível abranger toda a gama de incêndios localizados (o Anexo C da NP EN 1991-1-2:2010 aplica-se até D = 10 m e Q = 50 MW)
- → Após validação do modelo(s), a modelação CFD é uma ferramenta poderosa e económica capaz de fornecer um vasto conjunto de resultados para validação de métodos de cálculo analítico
- O software FDS é um software livre, desenvolvido pela NIST, e muito utilizado pela comunidade de engenheiros de segurança contra incêndios

A calibração dos modelos FDS foi processada através da reprodução de 5 testes selecionados de acordo com os seguintes critérios:

- Testes realizados sobre condições constantes e controladas (Liège) e condições livres (Ulster)
- Os testes exibiam longa estabilidade e resultados estáveis
- Diferentes tipos de combustíveis, diâmetros de incêndio pequenos e grandes, com e sem teto,...
Calibração de um modelo CFD utilizando software FDS Parâmetros de calibração

Os parâmetros mais influentes ajustados durante o processo de calibração são:

- Modelo de turbulência (Smagorinski, C_s = 0.1)
- Propriedades do combustível, incluindo produção de fuligem, retirado da literatura (condições sobreventiladas)
- Número de ângulos de radiação (200)
- Parcela de perda de radiação (entre 0.2-0.5, maioritariamente dependente do tipo de combustível e do diâmetro do incêndio)
- Efeitos do vento (baseado em medições)
- Dimensões da malha da grelha (baseado no comprimento característico e medida de resolução da turbulência)

Exemplo de variação de fluxos devido a número insuficiente de ângulos de Radiação

Calibração de um modelo CFD utilizando software FDS

Ensaio ULG 06 (D = 1m, Heptano, sem coluna)

Fluxo médio de combustível q _{fuel}	0.98 l/min
Produção de fuligem y _{soot}	0.037
Calor ideal de combustão $\Delta H_{c,ideal}$	44600 kJ/kg
Calor de combustão $\Delta \mathbf{H}_{c}$	41200 kJ/kg
RHR calculado com $\Delta \mathbf{H}_{c,ideal}$	491.7 kW (626.1 kW/m ²)

- Dimensão do domínio CFD: 5.75m x 3m x 4m
- Dimensão da grelha: 5cm x 5 cm x 5 cm
- Velocidade do vento: 0.22 m/s
- Parcela de perda de radiação: 0.45 (SFPE)

Calibração de um modelo CFD utilizando software FDS Ensaio ULG 06 (D = 1m, Heptano, sem coluna)

Calibração de um modelo CFD utilizando software FDS Ensaio Ulster O29 (D = 0.7m, Diesel, com teto a 3.5m)

Densidade do combustível p	823 kg/m ³
Produção de fuligem y_{soot}	0.10
Calor ideal de combustão $\Delta \mathbf{H}_{c,ideal}$	44000 kJ/kg
Calor de combustão ∆H _c	41200 kJ/kg
RHR calculado com $\Delta H_{c,ideal}$	491.5 kW (1277.1 kW/m ²)

- Dimensão do domínio CFD: 7m x 7m x 3.5m
- Dimensão da grelha: 5cm x 5 cm x 5 cm
- Velocidade do vento: 0.76 m/s
- Parcela de perda de radiação: 0.45 (SFPE)

Calibração de um modelo CFD utilizando software FDS

Ensaio Ulster O29 (D = 0.7m, Diesel, com teto a 3.5m)

Ensaios franceses (fora do âmbito do LOCAFI+) Ensaios iniciados por LCPP num grande volume:

- Sala principal: 300 m x 50 x 17 m
- 2 tipos de combustível: paletes de madeira / querosene
- Testes de fogo repetidos
- Muito instrumentados: termopares, medidores de fluxo de calor, vídeos (IR e normal)

Ensaio pequeno: ~ 20 paletes Ensaio médio: ~ 60 paletes Ensaio enorme: ~ 110 paletes

HRR ~ 30 MW

LOCAFI+

Temperature assessment of a vertical member subjected to LOCAlised FIre Dissemination

Grant Agreement n° 754072

4. Método analítico e validação

4.1. Conceito de Chama Sólida Virtual Modelação da chama

Passo 1: A superfície do fogo é transformada num disco equivalente

$$D_{fire} = \sqrt{\frac{4.S}{\pi}}$$

Passo 2: A evolução da Taxa de Libertação de Calor é calculada de acordo com o Anexo E da NP EN 1991-1-2:2010 (fase de crescimento, fase estacionária, fase de extinção)

Passo 3: O comprimento da chama L_f é calculado através da aplicação do Anexo C da NP EN 1991-1-2:2010 $L_f(t) = -1.02 D_{fire} + 0.0148 Q(t)^{0.4}$

<mark>Passo 4: A ação do fogo é represe</mark>ntada por uma chama sólida virtual, cónica ou cilíndrica, definida por D_{eq} e L_f

4.1. Conceito de Chama Sólida Virtual

Modelação da chama

Se a chama não atinge o teto ($L_f < H_{ceiling}$ ou sem teto)

4.1. Conceito de Chama Sólida Virtual

Modelação da chama

 $\theta_f(r) \text{ satisfaz para } \dot{h}(r) = \sigma \left(\left(\theta_f(r) + 273 \right)^4 - 293^4 \right) + 35 \left(\theta_f(r) - 20 \right)$

Nota: a contribuição dos anéis é bastante baixa, exceto se o elemento estiver situado no anel → considerado apenas para elementos ao nível do teto

4.2. Método geométrico para fluxos de calor trocados <u>Avaliação dos fluxos de calor por radiação</u>

O fluxo de calor por radiação que emana de uma dada superfície radiante dA_1 e que é recebido por uma superfície dA_2 é :

$$\phi_{dA_1 \to dA_2} = \alpha_2 \varepsilon_1 \sigma. T^4 \frac{\cos(\theta_1) \cos(\theta_2) dA_1 dA_2}{\pi r^2}$$

- a emissividade ε_1 (da superfície emissora) é assumida igual a 1 para chamas
- a absorção α_2 depende das propriedades da superfície recetora
- Lei de Kirchoff: absorção (α) = emissividade (ϵ)
- para o aço, $\varepsilon = \alpha = 0.7$

4.2. Geometrical method for exchanged heat fluxes

Modelação do elemento vertical

As secções côncavas implicam efeito sombra -> Como simplificação, os fluxos de calor são calculados num perímetro convexo.

Para secções em I ou H, o elemento estrutural é transformado numa forma retangular com secção tubular (de acordo com o Anexo G da NP EN 1991-1-2:2010)

Face_i

Assim, o perímetro da superfície é subdividido em faces

4.2. Geometrical method for exchanged heat fluxes Integração numérica

$$F_{d1-2} \simeq \frac{-1}{\pi} \sum_{i} \frac{(\vec{S}.\vec{n_1})(\vec{S}.\vec{n_2})}{S^4} \Delta A_i$$

- Cada troca de radiação "individual" é calculada (a cada passo de tempo).
- Necessita de um programa para aplicações reais.
- Permite a aplicação de condições não uniformes (fluxos de radiação) no perímetro da secção.

4.3. Modelo simplificado

Fator de vista entre uma superfície infinitesimal e um cilindro

4.3. Modelo simplificado

Fator de vista entre uma superfície infinitesimal e um cilindro

$$F_{dA_1 \to A_2} = \frac{H}{2} \left(\frac{H^2 + R_2^2 + 1}{\sqrt{(H^2 + R_2^2 + 1)^2 - 4R_2^2}} - \frac{H^2 + R_1^2 + 1}{\sqrt{(H^2 + R_1^2 + 1)^2 - 4R_1^2}} \right)$$
$$H = h/l$$
$$R = r/l$$

Válido apenas se $l > r_2 !$

4.3. Modelo simplificado

Subdivisão da chama em cilindros e anéis

situado no anel \rightarrow considerado apenas para elementos ao nível do teto

4.3. Modelo simplificado

Subdivisão da chama em cilindros e anéis (Adaptação 1)

Ignorando a contribuição dos anéis, subestimamos o fluxo recebido e podemos obter um fluxo incidente igual a 0 acima do incêndio!

4.3. Modelo simplificado

Subdivisão da chama em cilindros e anéis (Adaptação 2)

A fórmula para cilindro não é válida se a superfície recetora intersecta o cilindro!

4.3. Modelo simplificado

Subdivisão da chama em cilindros e anéis (Adaptação 2)

Neste caso, o cilindro inicial é transformado num cilindro modificado na zona visível

4.3. Modelo simplificado

Subdivisão da chama em cilindros e anéis (Adaptação 3)

Uma porção dos anéis é «escondida» pelo cilindro situado acima → Deve ser considerada uma zona reduzida (do lado da segurança se ignorar esta redução...)

4.3. Modelo simplificado

Notas adicionais

- O valor recomendado para a largura do cilindro é 50 cm
- Para elementos situados abaixo do teto, deve ser adicionada a convecção → Hasemi
- Para vários incêndios, os fluxos recebidos por cada incêndio devem ser adicionados. O fluxo total incidente é limitado a 100 kW/m²

$$\dot{h}_{tot} = min(\dot{h}_{rad_section} + \dot{h}_{conv}; 100000) \quad [W.m^{-2}]$$

- A temperatura do elemento é calculada estabelecendo-se o balanço térmico do elemento

$$\rho_a c_a(T) \frac{dT}{dt} = \frac{A_m}{V} \Big[\dot{h}_{z_j} + \alpha_c (20 - \theta) + \varepsilon \Big(\sigma (293^4 - (\theta + 273)^4) \Big) \Big]$$
[W.m⁻²]

 ρ_a , c_a , e_m/V são densidade [kg.m⁻³], calor especifico [J.kg⁻¹.K⁻¹] e massividade [m⁻¹] do elemento

4.3. Modelo simplificado

Validação do modelo baseado nos ensaios de Liège (e modelação FDS)

- Medidor situado a 3.75 m da fonte de incêndio (altura: 1.75 m)
- Orientação do medidor: perpendicular ao eixo fogo-medidor

Diâm.	Valor médio experimental	Ensaio nº	Chama cilíndrica	Chama cónica	
[m]	$[kW/m^2]$	[-]	$[kW/m^2]$	$[kW/m^2]$	
0.60	0.31	1 a 4	1.20	0.74	
1.00	0.73	5 a 8	3.23	1.95	
1.40	1.36	9 a 14	6.19	3.67	
1.80	2.12	15 a 18	9.95	5.78	
2.20	3.39	19 a 22	14.55	8.30	

4.3. Modelo simplificado

Validação do modelo baseado nos ensaios de Ulster (e modelação FDS)

4.3. Modelo simplificado

Validação do modelo baseado nos ensios de Ulster (e modelação FDS)

Localização do medidor					
Altura	Distância	Média experimental	Simulação FDS	Chama cilíndrica	Chama cónica
m	m	kW/m ²	kW/m ²	kW/m ²	kW/m ²
1.0	<u>0.5</u>	30.6	28.5	74.0	39.0
1.0	<u>1.0</u>	13.8	12.9	33.2	17.9
1.0	<u>1.6</u>	5.9	5.5	15.5	8.5
1.0	<u>1.8</u>	4.2	3.8	10.8	6.0
2.0	<u>0.5</u>	6.2	11.2	22.0	5.9
2.0	<u>1.0</u>	4.5	5.9	14.1	5.5
2.0	<u>1.6</u>	3.0	3.7	8.8	4.1
2.0	<u>1.8</u>	2.3	2.6	6.7	3.3

4.3. Modelo simplificado

Validação do modelo baseado nos ensaios de Ulster (e modelação FDS)

Localização do medidor		N/(1)-		Chama	Charma	
Altura	Distância	experimental	simulação	cilíndrica	cónica	
m	m	kW/m²	kW/m ²	kW/m ²	kW/m²	
1.0	<u>1.0</u>	31.0	26.6	66.3	37.4	
1.0	<u>1.0</u>	24.3	21.6	62.0	34.6	
2.0	<u>1.0</u>	15.0	17.7	40.9	16.2	
2.0	1.0	13.0	13.6	38.5	15.9	
Localização do medidor		N <i>A</i> / 1*	N#4 1° . 1.			
Altura	Distância	experimental	Media da simulação	Chama cilíndrica	Chama cónica	
m	m	kW/m ²	kW/m ²	kW/m ²	kW/m ²	
1.0	<u>1.5</u>	37.6	33.6	53.9	38.9	
2.0	<u>1.5</u>	26.5	24.5	55.2	29.7	

4.3. Modelo simplificado

Validação do modelo para grandes diâmetros (testes LCPP)

4.4. Nomogramas

- Fornece um novo conjunto de resultados para validação da implementação do SAFIR e do OZone
- Fornece resultados rápidos e seguros para uma ampla gama de configurações (pré dimensionamento) e um método de interpolação para aplicação a uma ainda mais vasta gama de configurações
- Fornece um conjunto de resultados para validação da implementação de métodos analíticos por profissionais (folhas de cálculo ou software)

4.4. Nomogramas

- Cada nomograma é caracterizado por:
 - o diâmetro do fogo (m)
 - a RHR (kW/m^2)
 - a orientação da superfície recetora (°)
- Os nomogramas apenas representam a radiação. Não usar:
 - No interior do incêndio → HESKESTAD
 - Ao nível do teto → HASEMI
- Assume que a emissividade da chama é 1.0
- Fornecem o fluxo incidente, não o fluxo absorvido (deve ser multiplicado pela emissividade!)

1)

Superfície Finita 1: $\theta = 0^{\circ}$ Superfície Finita 2: $\theta = 90^{\circ}$

4.4. Nomogramas

Caso	1	2	3	4	5	6	7	8	9	10	11	12
D (m)	2	2	2	2	3	3	3	3	4	4	4	4
HRR (kW/m ²)	250	500	1000	1500	250	500	1000	1500	250	500	1000	1500
Potência (MW)	0.8	1.6	3.1	4.7	1.8	3.5	7.1	10.6	3.1	6.3	12.6	18.8
Caso	13	14	15	16	17	18	19	20	21	22	23	24
D (m)	6	6	6	6	8	8	8	9	9	9	10	10
HRR (kW/m ²)	250	500	1000	1500	250	500	1000	250	500	750	250	500
Potência (MW)	7.1	14.1	28.3	42.4	12.6	25.1	50.3	47.7	15.9	31.8	19.6	39.3

Âmbito de aplicação do método (idem do Anexo C da NP EN 1991-1-2:2010): $D \leq 10 m$; $Q \leq 50 MW$

As configurações escolhidas abrangem o campo de aplicação do método de cálculo

4.4. Nomogramas

4.5. Conclusões

- O projeto LOCAFI introduz o novo conceito de Chama Sólida Virtual.
- A distribuição de temperatura no perímetro da Chama Sólida Virtual é baseada em equações existentes do Anexo C da NP EN 1991-1-2:2010 (Heskestad, Hasemi).
- A troca de fluxos de radiação é baseada no fator de vista do Anexo G da NP EN 1991-1-2:2010.
- O modelo simplificado é baseado em equações matemáticas que fornecem o fluxo por radiação recebido por uma superfície infinitesimal proveniente de cilindros e anéis.
- Os fluxos convectivos devem ser calculados separadamente. Contudo, os fluxos de calor convectivos apenas tem um efeito significativo em configurações já abrangidas pelo Anexo C da NP EN 1991-1-2:2010 (elementos totalmente envolvidos pelas chamas ou situados ao nível do teto).

LOCAFI+

Temperature assessment of a vertical member subjected to LOCAlised FIre Dissemination

Grant Agreement n° 754072

5. Programa de cálcuo automático

5. Programa de cálculo automático

5.1. OZone Compartimento

http://sections.arcelormittal.com/download-center/design-software/fire-calculations.html

5. Programa de cálculo automático

5.1. OZone Compartimento

File Tools	View Help									
🖹 New 👌	Open 🔚 Save 🛛 📙 Charts 👻 🎫 Re	port <u>N</u> ame:								
	Program Flow Chart									
	Natural Fire	Thermal Analysis								
\sim	Commentant									
(The second seco	Compartment									
4	A 5-									
). (1)	w rire									
m	Thermal Astics									
Ш.										
		Staal Profile								
(\mathbf{r})		Steel Plolle								
<u> </u>		Steel Temperature								
<u> </u>										
\mathcal{O}										
\square										
	Att Strategy									
\bigcirc										
	Parameters									
\bigcirc										
\bigcirc										
		Compartment Fire Heating Steel								
File Tools View Help										
----------------------	----------	--	-------------------------------	----------	---------------	---------	--------------------------------------	-------------	---	-------------------------------
		Form of Compartment	t							
Ceiling	Т	 Rectangular Rom Flat Roof Single Pitch Double Pitch Any Compartmer 	or 1 Roof 1h Roof 1t				<u>H</u> eight: Depth: Length:	m m m		Geometria do compartimento
Floor		Define Layers and O	penings						Ľ	
		Select Wall:			Defined Wal	3: T	Onering			
		Floor	▼ Define		vvai Floor	Туре	Openings Li	ength		Propriedades d
Wall 3	TI	Select Walls to Cop	y to:		Ceiling					r topriedades d
		Ceiling	Сору		Wall 1					pavimento,
		Wall 1 Wall 2			Wall 2					
Wall 4 Wall 2	Length	Wall 3			Wall 3					paredes e teto
		VVall 4	Сору Ор	enings	Wall 4					
Wall 1		Forced Ventilation							Ρ	
Depth	<u> </u>	Smoke Extractors:	0							
			Height	Diameter	Volu	ne	In/Out			\mathbf{x}
			m	m	m³/s	вс				Ventilação
		Extractor 1								forcada
		Extractor 2								Ioiçaua
		Extractor 3								(co ovictir)

4

5.1. OZone Compartimento

File Tools View Help

m

Inside Layer 1 Layer 2 Layer 3 Layer 4 Outside

Wall <u>L</u>ength: 13

	Material	Thickness	Unit mass	Conductivity	Specific Heat	Rel Emissivity	Rel Emissivity
		cm	kg/m³	W/mK	J/kgK	Hot Surface	Cold Surface
Layer 1	Steel [EN1994-1-2]	0.1	7850	45	600	0.8	0.8
Layer 2	Glass wool _Rock wool	6	60	0.037	1030	0.8	0.8
Layer 3	Steel [EN1994-1-2]	0.1	7850	45	600	0.8	0.8
Layer 4							

Enter each layer on a single row in the table above (up to four layers). Just click in a cell and edit it's value. If not found in the list of materials you can define your own material, by filling in the apropriate cells. Define your layers starting from Layer 1 (Inside).

Define your openings if any (up to three openings in a single wall). Click in the desired cell and input your values. Start from Opening 1.

To delete or insert a row, right click on a row header and select the appropriate command from the popup menu.

	Sill Height Hi Soffit Height Hs		Width	Variation	Adiabatic
	m	m	m		
Opening 1	0	4	4.2	Stepwise	no
Opening 2	0	2	1	Stepwise	no
Opening 3					

OK

Cancel

Propriedades das camadas para cada parede

Temperature Depender	t Openings			
remperature Depender	it openings			
Temperature <u>D</u> epender	nt: 4	℃ 00		
Stepwise Variation				
1	Temperature	% of Total Openings		
	°C			
	20	10		
	400	50		
	500	100		
Linear Variation				
1	Temperature	% of Total Openings		
	°C			

	remperature	% or Total Openings
/	° C	
	20	10
	400	50
	500	100

Aberturas

Time Dependent Openings

Time	% of Total Openings
sec	
0	5
1200	100

5.1. OZone Compartimento

File Tools	View Help				
🖹 New 👌	Open 🔒 Save 🛮 払 Charts	ame:			
	Program Flow Chart				
	Natural Fire	Thermal Analysis			
\sim	Converting of				
T	Compartment				
<u>10</u>					
(I)	A Fire				
ň					
	Thermal Action	Heating			
	<u></u>				
\mathcal{O}		Steel Profile			
<u> </u>					
0		Steel Temperature			
∞					
Û	[
	Krategy				
$\overline{\bigcirc}$	<u> </u>				
Ň	Parameters				
\bigcirc					
\bigcirc					
		Compartment Fire	Heating	Steel	

5.1. OZone Compartimento

le Tools View Help							
Compartment Fire: 💿 Anne Localised Fire: 💿 Loca	x E (EN 1991-1-2) © User lised Fire	Defined Fire		Nation	nal Annex: Defa	ault	•
Decupancy	Fire Growth Rate	RHRf		Fire Load qf,k	Danger of Fire Activa		
		[kW/m²]		80% Fractile MJ/m ²			
School	✓ Medium	250		347	1		
Active Fire Fighting Measures			Fire Info				
Automatic Water Extinguis	hing System	δ _{n,1} =1	Max Fire <u>A</u> re	a:			m²
Independent Water Suppli	es 💿 1 🖉	2 δ _{n,2} =1	Fire <u>E</u> levatio	n:		0	m
Automatic Fire Detection b	δ _{n 2} =1	Fuel Height:			0	m	
Automatic Fire Detection b	y Smoke	01,5	Design Fire L	Load			
Automatic Alarm Transmiss	sion to Fire Brigade	δ _{n,5} =1	Fire Risk Area:			^{m⁻} δ _{q,1} =1	
Work Fire Brigade		δ _{n c} =1	Active Measures:			0q,2 · Πδρ:=1	
Off Site Fire Brigade		-11,0	q _{f,d} = δq.	1 δ _{q,2} Πδ _{n,i} m·q _{f,k} = 277.	.6 MJ/m²	110(1)	
Safe Access Routes		δ _{n 8} =1	Compution				
Staircases Under Overpres	ssure in Fire Alarm	-11,0	Combustion				
Fire Fighting Devices		δ _{n,9} =1	<u>C</u> ombustion	Efficiency Factor:	0.8		
		δ _{n,10} =1	Combustion <u>M</u> odel:		Exter	nded fire dura	atio 🔻
			Stoichiometr	ric Coefficient:	1.27		
					OK		Cancel

Ignição

5.1. OZone Compartimento

Antes do incêndio

5.1. OZone Compartimento

Incêndio localizado

Incêndio totalmente desenvolvido

5.1. OZone Compartimento

File Tools	View Help								
🖹 New 👌	Open 🔚 Save	harts	🔻 📑 Report	<u>N</u> ame:					
	Program Flow Char	rt		1					
		Natural Fire			Thermal Anal	ysis			
\sim		montmont							
(The second seco		mparimeni							
3									
(D)		e							
m		1.6.11			Let u u				
<u> </u>	 In	ermal Action			Heating				
()					Steel Profile				
<u> </u>									
<u> </u>						ure			
\odot									
U U									
\subseteq	Krategy								
0									
Ň	Parameters								
\bigcirc	<u></u>								
\bigcirc									
					Compartment	Fire	Heating	Steel	

5.1. OZone Compartimento

🔊 Strategy				_ = >
File Tools View Help				
Upper Layer				
Lower Layer	Transition (2 Zones to 1 Zone) Criteria			
	Upper Layer Temperature	≥ 500	°C	0
↓	Combustible in Upper Layer + U.L. Temperature Combustible Ignition Temperatu	≥ Combustible ire: 300	e Ignition Temperature °C	0
	Interface Height	≤ 0,2	x Compartment Height	:
	Fire Area	≥ 0,25	x Floor Area	
	Select Analysis Strategy			
	• <u>C</u> ombination (default)			
	C 2 <u>Z</u> ones			
	C 1Zone			
			ОК С	Cancel

5.1. OZone Compartimento

Após 13 minutos, a temperatura da camada superior atinge os 500°C → Passando de 2 zonas para 1 zona

5.1. OZone Compartimento

🍠 Fire							
File Tools	View Help						
Compartmen Localised Fir	tFine: ⊚An e: ⊚Lo	nnex E (EN 1991 ocalised Fire	I-1-2) 💿 Use	Defined Fire		To delete or insert a row, right click on a row h command from the popup menu.	neader and select the appropriate
Point	Time	RHR	mf	Fire Area		Data Points	
	sec	MW	kg/s	m²		Save Load	
1							
2					=	Fire Info	
3					_		
4					_	Max Fire <u>A</u> rea:	m*
5						Fire <u>El</u> evation:	0 m
6						Evel Usieks	0 m
/						ruei height.	0
ð o						User Defined Fire Columns	
10						Only RHR	
10							
12						Only mf	
13						RHR and mf	
14							
15						Fire Area	
16							
17						Combustion	
18							
19						Combustion Efficiency Factor	0.8
20						<u>c</u> ombuston Encicity rector.	
21						Combustion <u>M</u> odel:	No combustion mode 🔻
22						Stoichiometric Coefficient:	1.27
23							
							OK Cancel

Localised Fire:	Localised Fire			Select fire: 1				
Fire	Diametre	Pos X	Pos Y		Time	RHR		
	[m]	[m]	[m]		[min]	[MW]		
Fire 1	3	2.5	1.25	Point 1	0	0	=	
Fire 2	Diâm		~ . 1.	Point 2	5	1		T 1 ~ 1
Fire 3	Diam	etro e posiç	ao ao	Point 3	10	2		Evolução da
Fire 4	incên	dio(s) local	izado	Point 4	15	2.5	5	DIID
Fire 5				Point 5	20	1.5		KHK
		Geometrical Data		Point 6	25	0		
L X		Cailing Height		Point 7				
	_	Celling Height.	3.5	Point 8				
	Fire	Distance on Axis (x):	0 m	Point 9				
		Height on Axis (z):	3.4 m	Point 10				
		noight on 7 vas (z).		Point 11				
		O alvo (col	una) é	Point 12				
			$i x_0 x = 0 \acute{F}$	Point 13				
		sempre no e	10 y = 0.12	Point 14				
		recomendáve	el localizá-lo	Point 15				
	x	em x	= 0	Point 16				
				Point 17				
				Point 18				
				Point 19				
				Point 20			-	

🥏 OZone v3	.0 - test			🤊 Steel Temperature	- test		
File Tools	View Help			File Tools View	Help		
🗋 New 🖻	9 Pyrolysis Rate Data RHR Data	⊧port Name:				Steel Temperature	
$\overline{\mathbf{S}}$	Pyrolysis Rate Computed RHR Computed	Thermal Analysis		240			
eta	Cold Zone Temperature Heat Flux Steel Temperature			180			
	Zones Interface Elevation Fire Area Floor Pressure	Heating		O Jerature 120			
0.0	Oxygen Mass Report	Openings Steel Temperature Badiation Through Closed Openin Bemoull Coefficient: Better	ngs: 0.8 (0 - 1)	E 			
one	Krategy	Physical Characteristics of Compar Initial Temperature : Initial <u>P</u> ressure : Parameters of Wall Material	tment 233 K 100000 Pa				
Z	Parameters	Convection Coefficient at the Hot Convection Coefficient at the Colo	Surface: 35 W/m² K §urface: 9 W/m² K	ŏ	5	10 15 Time [min]	20 25
\bigcirc		Calculation Parameters End of Calculation:	7200 sec	Max:227 °C A	t: 23 min		
test.ozn		Compartment Fire Ime Step for Printing Results: <u>Maximum</u> Time Step for Calculatio	60 sec n: 10 sec				Print Close
		Extended Results Fire Design Partial Safety Factor γ M, fi	1				

5.3. SAFIR Incêndio Localizado

- O método geométrico foi implementado no SAFIR (troca direta de calor entre superfícies finitas).
- Isto gera uma distribuição não uniforme de temperatura nas secções analisadas.
- Cada incêndio é descrito pela posição (x, y, z), forma (cilíndrica ou cónica), posição vertical do teto, evolução do diâmetro no tempo, evolução da RHR no tempo.
- No caso de vários incêndios, os efeitos são somados e limitados a 100 kW/m².

Franssen, J.-M., & Gernay, T. (2017). Modeling structures in fire with SAFIR®: Theoretical background and capabilities. Journal of Structural Fire Engineering, 8(3), 300-323.

5.3. SAFIR Incêndio Localizado

- Uma análise térmica 2D é realizada em cada ponto de Gauss de cada elemento finito de barra (ou casca).

Esta coluna tem 4 elementos finitos => 8 pontos de Gauss

5.3. SAFIR Incêndio Localizado

- Numa secção côncava, o efeito de sombra é automaticamente considerado se a secção estiver fora do incêndio.

LOCAFI+

Temperature assessment of a vertical member subjected to LOCAlised FIre Dissemination

Grant Agreement n° 754072

6. Síntese da resistência ao fogo

6.1. Procedimento Geral

Passo 1: Definição da carga térmica

Passo 2: Análise térmica

Passo 3: Análise mecânica

O procedimento geral é passo a passo (Passo 1 \rightarrow Passo 2 \rightarrow Passo 3) mas, mais precisamente, a conexão deve ser nas duas direções. Se estas duas conexões não forem consideradas, o engenheiro deve estar ciente dos pressupostos associados!

- As deflexões/deslocamentos de um elemento estrutural podem influenciar o desenvolvimento do fogo
- As deflexões/deslocamentos de um elemento estrutural podem influenciar a exposição térmica
- A elevação de temperatura nos elementos pode influenciar a absorção de energia absorvida em paredes/pavimentos
- A plasticidade e fissuração podem induzir geração ou perda de calor

6.2. Definição do cenário de incêndio

6.2.1. Incêndios em compartimentos

- Curva de incêndio nominal (ISO-834, Hidrocarbonetos,...)
- Curva de incêndio natural (curva paramétrica de acordo com o Anexo A da NP EN 1991-1-2:2010, software OZone baseado na NP EN 1991-1-2:2010 Anexos D e E)
- 6.2.2. Incêndios localizados
- Cenário de incêndio definido pelo engenheiro/autoridades (diâmetro, RHR)

6.2. Definição do cenário de incêndio

6.2.2. Incêndio localizado

6.3. Análise térmica

6.3.1. Temperatura estacionária

A temperatura estacionária θ é a temperatura em que o fluxo absorvido é equilibrado pelo fluxo emitido (convectivo e radiação)

$$0 = \alpha_{c}(\theta - 20) + \sigma \varepsilon [(\theta + 273)^{4} - (20 + 273)^{4}] - \varepsilon * \dot{h}_{m,r}$$

Fluxo convectivo
emitido
Fluxo de
radiação emitido
Fluxo absorvido

No caso de incêndios em compartimentos, o fluxo incidente médio por radiação $\dot{h}_{m,r}$ deve ser substituído por $\dot{h}_{m,tot}$, incluindo os fluxos convectivos e por radiação.

 $\dot{h}_{m,tot} = min(\dot{h}_{m,r} + \dot{h}_{m,c}; 100000)$ [W.m⁻²]

Esta abordagem simplificada ignora a inércia térmica do elemento

6.3. Análise térmica

6.3.2. Procedimento incremental (temperatura uniforme)

A temperatura do elemento é calculada formulando-se o balanço térmico do elemento

$$\rho_a c_a(T) \frac{dT}{dt} = \frac{A_m}{V} \left[\varepsilon * \dot{h}_{m,r} + \alpha_c (20 - \theta) + \varepsilon \left(\sigma (293^4 - (\theta + 273)^4) \right) \right]$$

 ρ_a , $c_{a_r} e A_m / V$ são densidade [kg.m⁻³], calor especifico [J.kg⁻¹.K⁻¹] e massividade [m⁻¹] do elemento

A NP EN 1993-1-2:2010 impõe que o passo de tempo ∆t não seja superior a 5 segundos

No caso de incêndios em compartimentos, o fluxo por radiação incidente médio $\dot{h}_{m,r}$ deve ser substituído por \dot{h}_{tot} , incluindo os fluxos convectivos e por radiação.

$$\dot{h}_{m,tot} = min(\dot{h}_{m,r} + \dot{h}_{m,c}; 100000)$$
 [W.m⁻²]

6.3. Análise térmica

6.3.2. Procedimento incremental (temperatura uniforme)

Massa volúmica do aço: 7850 kg/m³

Independente da temperatura

6.3. Análise térmica

6.3.3. Análise térmica de E.F. (temperatura não uniforme)

Distribuição de temperatura [°C] após 33 minutos para uma coluna de 3.36 [m] com uma secção transversal quadrada 130[mm]x130[mm] rodeada por 3 carros e uma 1 carrinha a a) uma altura de 0.94[m]; b) uma altura de 3.1[m]

6.4. Análise mecânica

6.4.1. Regras gerais da NP EN 1993-1-2:2010

As regras de dimensionamento de estruturas metálicas em situação de incêndio do Eurocódigo 3 apenas abrangem a função de resistência estrutural R

A função de resistência estrutural de uma estrutura apenas é garantida se durante a duração relevante de exposição ao fogo t

$$E_{fi,d,t} \le R_{fi,d,t}$$

onde E_f

E_{fi,d,t}: efeito de cálculo das ações (Eurocódigos 0 e 1)
 R_{fi,d,t}: correspondente resistência de cálculo da estrutura no instante t

6.4. Análise mecânica

6.4.1. Regras gerais da NP EN 1993-1-2:2010

Combinação de ULS

$$E_{d} = 1.35^{*} \sum_{j \ge 1} G_{k,j} + 1.5^{*} Q_{k,1} + 1.5^{*} \sum_{i \ge 2} Q_{k,i}$$
Combinação de ACC

$$E_{fi,d,t} = \sum_{j \ge 1} G_{k,j} + \Psi_{2,1} Q_{k,1} + \sum_{i \ge 2} \Psi_{2,i} Q_{k,i}$$

Nota: dependendo do país deve ser aplicado $\psi_{1,1}$ *ou* $\psi_{2,1}$.

Ações	Ψ_0	Ψ_1	Ψ_2
Categoria A : zonas de	Ű	Ť	
habitação	0.7	0.5	0.3
Categoria B : zonas de			
escritórios	0.7	0.5	0.3
Categoria C : zonas de			
reunião de pessoas	0.7	0.7	0.6
Categoria D : zonas			
comerciais	0.7	0.7	0.6
Categoria E : zonas de			
armazenamento	1	0.9	0.8

10

6.4. Análise mecânica

6.4.1. Regras gerais da NP EN 1993-1-2:2010

Fatores parciais do aço a elevadas temperaturas

Tipo de elementos	Dimensionamento à temperatura normal	Dimensionamento em situação de incêndio
Secções transversais	γ _{M0} = 1.0	γ _{M,fi} = 1.0
Elementos sujeitos a instabilidade	γ _{M1} = 1.0	γ _{M,fi} = 1.0
Elementos tracionados à rotura	γ _{M2} = 1.25	γ _{M,fi} = 1.0
Ligações	γ _{M2} = 1.25	γ _{M,fi} = 1.0

6.4. Análise mecânica

6.4.1. Regras gerais da NP EN 1993-1-2:2010

6.4. Análise mecânica

6.4.1. Regras gerais da NP EN 1993-1-2:2010

Verificação da resistência ao fogo de acordo com um dos 3 métodos seguintes :

Temperatura: $\theta_{cr,d} \ge \theta_d$

Capacidade de carga: R_{fi,d,t} ≥ E_{fi,d,t}

Tempo: $t_{fi,d} \ge t_{fi,required}$

O método mais simples e mais usado, sendo apenas válido para temperatura uniforme T°

Viável para cálculo manual (capacidade reduzida no tempo requerido)

Apenas é realizável utilizando-se ferramentas avançadas, como Modelos de Elementos Finitos

6.4. Análise mecânica

6.4.2. Verificação analítica de coluna de acordo com a NP EN 1993-1-2:2010

Temperatura

 $k_{y,\theta}$: redução da tensão de cedência efetiva

k_{E,θ}: redução do módulo de Young

 $k_{p,\theta}$: redução do limite de proporcionalidade

A atual versão da NP EN 1993-1-2:2010 aplica-se às classes de aço S235 a S460

6.4. Análise mecânica

6.4.2. Verificação analítica de coluna de acordo com a NP EN 1993-1-2:2010

Temperatura

Combinação de acidente

Fator de redução para o nível de carregamento

$$E_{\text{fi},d,t} = \sum_{j \ge 1} G_{k,j} + \Psi_{2,1} Q_{k,1} + \sum_{i \ge 2} \Psi_{2,i} Q_{k,i}$$

Nota: dependendo do país deve ser aplicado $\psi_{1,1}$ *ou* $\psi_{2,1}$.

$$\eta_{fi} = \frac{E_{fi,d,t}}{E_d}$$

$$\mathbf{E}_{d} = 1.35^{*} \sum_{j \ge 1} G_{k,j} + 1.5^{*} Q_{k,1} + 1.5^{*} \sum_{i \ge 2} \Psi_{0,i} Q_{k,i}$$

6.4. Análise mecânica

6.4.2. Verificação analítica de coluna de acordo com a NP EN 1993-1-2:2010

Temperatura

Fator de redução para o nível de carregamento

Dime	nsionam	ento estrutural em situação de incêndio ACC
γ_{GA}	= 1.0	Cargas permanentes;
$\Psi_{2,1}$	= 0.3	Fator de combinação; cargas variáveis, escritórios
Dime	nsionam	ento à temperatura ambiente ELU
Dime γ _G	nsionam = 1.35	ento à temperatura ambiente ELU Cargas permanentes;

A NP EN 1993-1-2:2010 recomenda η_{fi} = 0.65 (exceto para a Categoria E, η_{fi} = 0.7)

$$\eta_{fi} = \frac{\gamma_{GA}G_{k} + \psi_{2.1}Q_{k.1}}{\gamma_{G}G_{k} + \gamma_{Q.1}Q_{k.1}}$$

Q _{k,1} /G _k	η _{fi}
0	0.74
1	0.53
2	0.46
4	0.41

6.4. Análise mecânica

6.4.2. Verificação analítica de coluna de acordo com a NP EN 1993-1-2:2010

Temperatura

Combinação de acidente

Fator de redução para o nível de carregamento $E_{\text{fi},d,t} = \sum_{j \ge 1} G_{k,j} + \Psi_{2,1} Q_{k,1} + \sum_{i \ge 2} \Psi_{2,i} Q_{k,i}$

Nota: dependendo do país deve ser aplicado
$$\psi_{1,1}$$
 ou $\psi_{2,1}$.

$$\eta_{fi,t} = \frac{E_{fi,d,t}}{R_d} < \eta_{fi}$$

Resistência de cálculo à temperatura ambiente

6.4. Análise mecânica

6.4.2. Verificação analítica de coluna de acordo com a NP EN 1993-1-2:2010 **Temperatura**

Grau de Utilização

$$\mu_{0} = \left(\frac{E_{d,fi}}{R_{d,fi,0}}\right) = \eta_{fi,t} \left(\frac{\gamma_{M,fi}}{\gamma_{M0}}\right)$$

- Representa os fatores de segurança parciais à temperatura normal e elevada temperatura (normalmente os dois são 1.0)
- Permite o cálculo direto da temperatura critica θ
- No caso do modo de rotura incluir instabilidades, é necessário reduzir a esbelteza normalizada

6.4. Análise mecânica

6.4.2. Verificação analítica de coluna de acordo com a NP EN 1993-1-2:2010

$\overline{\lambda}_{fi,0}$	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
μ_0											
0.04	1000	977	949	913	880	839	787	742	696	678	659
0.06	900	885	866	837	795	756	700	679	656	630	602
0.08	860	839	811	785	749	697	674	647	616	588	564
0.10	820	797	780	752	703	677	648	614	585	557	527
0.12	792	777	755	719	685	656	622	588	559	526	474
0.14	775	757	730	694	668	636	597	567	533	487	373
0.16	758	737	705	681	652	615	580	546	507	408	
0.18	742	717	691	668	636	596	563	524	453		
0.20	725	698	680	655	619	582	545	503	384		
0.22	708	689	669	641	603	568	528	457			
0.24	696	679	658	628	591	554	511	406			
0.26	688	670	647	615	579	540	485				
0.28	679	660	636	602	568	526	446				
•••	•••	•••	•••	•••	•••	•••	•••				

Temperatura

A temperatura crítica de elementos de aço sujeitos a instabilidade utilizando dados tabelados específicos baseia-se em:

- Esbelteza normalizada no instante 0
- e um nível de carga especifico $\mu_0 = N_{fi,d,t} / N_{pl,fi,0}$
- cada classe de aço tem os seus próprios dados tabelados
6.4. Análise mecânica

6.4.2. Verificação analítica de coluna de acordo com a NP EN 1993-1-2:2010

Capacidade de carga

 $k_{y,\theta}$: redução da tensão de cedência efetiva $k_{E,\theta}$: redução do módulo de Young $k_{p,\theta}$: redução do limite de proporcionalidade

A atual versão da NP EN 1993-1-2:2010 aplica-se às classes de aço S235 a S460

6.4. Análise mecânica

6.4.2. Verificação analítica de coluna de acordo com a NP EN 1993-1-2:2010 Capacidade de carga $\alpha = 0.65 \sqrt{\frac{235}{f_y}} \qquad \overline{\lambda_{\theta}} = \overline{\lambda} \sqrt{\frac{k_{y,\theta}}{k_{E,\theta}}}$ $\varphi_{\theta} = \frac{1}{2} \left[1 + \alpha \overline{\lambda_{\theta}} + \overline{\lambda_{\theta}}^2 \right]$ $\chi(\lambda_{\theta})$ 1.0 0.5 L_{fi} $\chi_{fi} = \frac{1}{\varphi_{\theta} + \sqrt{\varphi_{\theta}^2 - \overline{\lambda_{\theta}}^2}}$ $N_{b,fi,t,Rd} = \frac{\chi_{fi} A k_{y,\theta} f_y}{\gamma_{M,fi}}$

especifica

Secção e Curva de encurvadura temperatura

0

21

6.4. Análise mecânica

6.4.2. Verificação analítica de coluna de acordo com a NP EN 1993-1-2:2010 Capacidade de carga

Critério de dimensionamento

Combinação de acidente

$$E_{\text{fi},d,t} = \sum_{j \ge 1} G_{k,j} + \Psi_{2,1} Q_{k,1} + \sum_{i \ge 2} \Psi_{2,i} Q_{k,i}$$

Nota: dependendo do país deve ser aplicado $\psi_{1,1}$ *ou* $\psi_{2,1}$.

$$\mathbf{R}_{\mathrm{fi},\mathrm{d},\mathrm{t}} \geq \mathbf{E}_{\mathrm{fi},\mathrm{d},\mathrm{t}}$$

6.4. Análise mecânica

6.4.3. Análise de elementos finitos

O gráfico tensão-extensão do aço não é linear (elástico, parabólico, constante, ramo descendente)

◆ A tensão de cedência a 600°C reduz cerca de 50%

6.4. Análise mecânica

6.4.3. Análise de elementos finitos

6.4. Análise mecânica

6.4.3. Análise de elementos finitos

Dimensionamento à temperatura normal

N_{b,Rd,cold}

Imperfeições iniciais
 Cargas aumentam
 até ao colapso

Perda de equilíbrio

6.4. Análise mecânica

6.4.3. Análise de elementos finitos

Tempo

Esquerda: Distribuição de temperatura no Nó 1068 após 33 minutos ao longo de uma coluna de 3.36 [m] com uma secção transversal quadrada com 130[mm]x130[mm] cercada por 3 carros e 1 carrinha

Direita: Forma do deslocamento no colapso (fator de escala 1) de uma coluna de 3.36[m] com uma secção transversal quadrada com 130[mm]x130[mm] cercada por 3 carros e 1 carrinha

LOCAFI+

Temperature assessment of a vertical member subjected to LOCAlised FIre Dissemination

Grant Agreement n° 754072

7. Exemplos de aplicação

7.1. Exemplo 1: Fluxos de radiação sob incêndio localizado

Cálculo realizado para z = 1.0m

7.1. Exemplo 1: Fluxos de radiação sob incêndio localizado

D = 4 m

$$Q = RHR * \frac{\pi}{4} * D^2 = 12566371 W$$
$$L_f = -1.02 D + 0.0148 Q^{0.4} = 6.15 m$$
$$z_0 = -1.02 D + 0.00524 Q^{0.4} = -0.48 m$$

Temperatura da chama

$$\theta_f(z) = \min\left(900; 20 + 0.25(0.8Q(t))^{2/3}(z - z_0)^{-5/3}\right)$$

z (m)	I(C)
0	900
0.5	900
1	900
1.5	900
2	900
2.5	900
3	900
3.5	900
4	900
4.5	827.9
5	708.4
5.5	614.8
6	540.0
6.5	479.3
7	429.1
7.5	387.2

7.1. Exemplo 1: Fluxos de radiação sob incêndio localizado

Face 1

			Input data							Se	ction coordination	ate					
	HRR	Dfire	Q	Q	hf		Cons	stant		sf	xf	zf		Intermedia	te variables		
	kW/m²	m	W	MW	m		σ	Tabs		m	m	m		Z _{virt}	I		
	1000	4	12566370.6	12.57	6.15		5.67E-08	273.15		2.5	0	1		-0.46	2.5		
										Cylinder						Ring	
zi	Tf	ri	F _{cylinder_zi}	F _{ring_zi}	Flux _{face1}	Fi	Fi+1	S	Х	А	Hi	Hi+1	zi-zf	zi+1-zf	Н	Ri	Ri+1
m	°C	m	_	-	kW/m²	-	-	-	-	-	-	-	m	m	-	-	-
0	900	2.00	0.0726	0	7.79	0.3705	0.2979	1.25	0	1.56	0.50	0.25	1.00	0.50	0	0.00	0.00
0.5	900	1.84	0.2374	0.0555	31.45	0.2374	0.0000	1.36	0	1.85	0.27	0.00	0.50	0.00	0.20	0.80	0.73
1	900	1.67	0.1893	0	20.33	0.0000	0.1893	1.49	0	2.23	0.00	0.30	0.00	0.50	0	0.73	0.67
1.5	900	1.51	0.0823	0	8.84	0.1514	0.2337	1.65	0	2.73	0.33	0.66	0.50	1.00	0	0.67	0.60
2	900	1.35	0.0361	0	3.88	0.1953	0.2315	1.85	0	3.43	0.74	1.11	1.00	1.50	0	0.60	0.54
2.5	900	1.19	0.0177	0	1.91	0.1958	0.2136	2.11	0	4.43	1.26	1.68	1.50	2.00	0	0.54	0.47
3	900	1.02	0.0095	0	1.02	0.1797	0.1893	2.44	0	5.95	1.95	2.44	2.00	2.50	0	0.47	0.41
3.5	900	0.86	0.0054	0	0.58	0.1564	0.1618	2.90	0	8.41	2.90	3.48	2.50	3.00	0	0.41	0.34
4	900	0.70	0.0031	0	0.34	0.1296	0.1328	3.57	0	12.77	4.29	5.00	3.00	3.50	0	0.34	0.28
4.5	828	0.54	0.0018	0	0.15	0.1009	0.1027	4.66	0	21.68	6.52	7.45	3.50	4.00	0	0.28	0.21
5	708	0.37	0.0010	0	0.05	0.0711	0.0720	6.68	0	44.58	10.68	12.02	4.00	4.50	0	0.21	0.15
5.5	615	0.21	0.0004	0	0.02	0.0405	0.0409	11.80	0	139.24	21.24	23.60	4.50	5.00	0	0.15	0.08
6	540	0.05	0.0001	0	0.00	0.0095	0.0096	50.71	0	2571.11	101.41	111.55	5.00	5.50	0	0.08	0.02
6.5	479	0	0	0	0	0	0	0	0	0	0	0	5.50	6.00	0	0.02	0
7	429	0	0	0	0	0	0	0	0	0	0	0	6.00	6.50	0	0	0
7.5	387	0	0	0	0	0	0	0	0	0	0	0	6.50	1.00	0	0	0
		Incider	<mark>nt heat flux o</mark> n	face 1	76.36	kW/m²											
		Absorb	<mark>ed heat flux o</mark>	n face 1	53.45	kW/m²											

zi							King							
	Tf	ri	F _{cylinder_zi}	F _{ring_zi}	Flux _{face2}	н	Ri	Ri+1				Input data		
m	°C	m	-	-	kW/m²	-	-	-		HRR	Dfire	Q	Q	hf
0	900	2.00	0.0175	0	1.88	0	0.00	0.00		kW/m²	m	w	MW	m
0.5	900	1.84	0.0193	0.0060	2.71	0.20	0.40	0.37		1000	4	12566370.6	12.57	6.15
1	900	1.67	0.0160	0	1.72	0	0.37	0.33						
1.5	900	1.51	0.0103	0	1.10	0	0.33	0.30						
2	900	1.35	0.0056	0	0.60	0	0.30	0.27		Se	ction coordin	ate		
2.5	900	1.19	0.0028	0	0.30	0	0.27	0.24		sf	xf	zf		
3	900	1.02	0.0014	0	0.15	0	0.24	0.20		m	m	m		
3.5	900	0.86	0.0006	0	0.07	0	0.20	0.17		2.5	0	1		
4	900	0.70	0.0003	0	0.03	0	0.17	0.14						
4.5	828	0.54	0.0001	0	0.01	0	0.14	0.11						
5	708	0.37	0.0000	0	0.00	0	0.11	0.07						
5.5	615	0.21	0.0000	0	0.00	0	0.07	0.04		Cons	stant		Intermedia	te variables
6	540	0.05	0.0000	0	0.00	0	0.04	0.01		σ	Tabs		Z _{virt}	I
6.5	479	0	0	0	0	0	0.01	0.00		5.67E-08	273.15		-0.46	2.5
7	429	0	0	0	0	0	0	0						
7.5	387	0	0	0	0	0	0	0						
		Incider	nt heat flux or	n face 2	8.57	kW/m²								
		Absorbe	ed heat flux b	y face 2	6.00	kW/m²								
				1										
				,										
	Modified cy	linder / ring		•				Cylir	nder					
rmin	Modified cy rmax	linder / ring ri_ _{adjusted}	Y _{center}	Fi	Fi+1	s	S	Cylin X	nder A	Hi	Hi+1	z _i -z _f	z _{i+1} -z _f	
rmin m	Modified cy rmax m	linder / ring ri_ _{adjusted} m	Y _{center} m	Fi -	Fi+1	S -	S -	Cylin X -	nder A -	Hi -	Hi+1 -	z _i -z _f m	z _{i+1} -z _f m	
rmin m 0	Modified cy rmax m 2.00	linder / ring ri_ _{adjusted} m 1.00	Y _{center} M 1.00	Fi - 0.0403	Fi+1 - 0.0229	s - 1.00	S - 1.00	Cylin X - 2.50	nder A - 7.25	Hi - 1.00	Hi+1 - 0.50	z _i -z _f m 1.00	z _{i+1} -z _f m 0.50	
rmin m 0 0	Modified cy rmax m 2.00 1.84	linder / ring ri_adjusted m 1.00 0.92	Y _{center} m 1.00 0.92	Fi - 0.0403 0.0193	Fi+1 - 0.0229 0.0000	s - 1.00 0.92	S - 1.00 1.00	Cylin X - 2.50 2.72	nder A - 7.25 8.40	Hi - 1.00 0.54	Hi+1 - 0.50 0.00	z _i -z _f m 1.00 0.50	z _{i+1} -z _f m 0.50 0.00	
rmin m 0 0 0	Modified cy rmax m 2.00 1.84 1.67	linder / ring ri _{_adjusted} m 1.00 0.92 0.84	Y _{center} m 1.00 0.92 0.84	Fi - 0.0403 0.0193 0.0000	Fi+1 - 0.0229 0.0000 0.0160	s - 1.00 0.92 0.84	S - 1.00 1.00 1.00	Cylin X - 2.50 2.72 2.99	nder A - 7.25 8.40 9.91	Hi - 1.00 0.54 0.00	Hi+1 - 0.50 0.00 0.60	z _i -z _f m 1.00 0.50 0.00	z _{i+1} -z _f m 0.50 0.00 0.50	
rmin 	Modified cy rmax m 2.00 1.84 1.67 1.51	linder / ring ri_adjusted m 1.00 0.92 0.84 0.76	Y _{center} m 1.00 0.92 0.84 0.76	Fi - 0.0403 0.0193 0.0000 0.0130	Fi+1 - 0.0229 0.0000 0.0160 0.0233	s 	S - 1.00 1.00 1.00 1.00	Cylin X - 2.50 2.72 2.99 3.31	nder A - 7.25 8.40 9.91 11.93	Hi - 1.00 0.54 0.00 0.66	Hi+1 - 0.50 0.00 0.60 1.32	z _i -z _f m 1.00 0.50 0.00 0.50	z _{i+1} -z _f m 0.50 0.00 0.50 1.00	
rmin m 0 0 0 0 0 0 0	Modified cy rmax m 2.00 1.84 1.67 1.51 1.35	linder / ring ri_adjusted m 1.00 0.92 0.84 0.76 0.67	Y _{center} m 1.00 0.92 0.84 0.76 0.67	Fi - 0.0403 0.0193 0.0000 0.0130 0.0185	Fi+1 - 0.0229 0.0000 0.0160 0.0233 0.0241	s - 1.00 0.92 0.84 0.76 0.67	S - 1.00 1.00 1.00 1.00 1.00	Cylin X - 2.50 2.72 2.99 3.31 3.70	nder A - 7.25 8.40 9.91 11.93 14.72	Hi - 1.00 0.54 0.00 0.66 1.48	Hi+1 - 0.50 0.00 0.60 1.32 2.22	z _i -z _f m 1.00 0.50 0.00 0.50 1.00	z _{i+1} -z _f m 0.50 0.00 0.50 1.00 1.50	
rmin m 0 0 0 0 0 0 0 0	Modified cy rmax m 2.00 1.84 1.67 1.51 1.35 1.19	linder / ring ri_adjusted m 1.00 0.92 0.84 0.76 0.67 0.59	Y _{center} m 1.00 0.92 0.84 0.76 0.67 0.59	Fi - 0.0403 0.0193 0.0000 0.0130 0.0185 0.0187	Fi+1 - 0.0229 0.0000 0.0160 0.0233 0.0241 0.0215	s 0.92 0.84 0.76 0.67 0.59	S - 1.00 1.00 1.00 1.00 1.00 1.00	Cylin X - 2.50 2.72 2.99 3.31 3.70 4.21	A - 7.25 8.40 9.91 11.93 14.72 18.74	Hi - 1.00 0.54 0.00 0.66 1.48 2.53	Hi+1 - 0.50 0.00 0.60 1.32 2.22 3.37	z _i -z _f m 1.00 0.50 0.00 0.50 1.00 1.50	z _{i+1} -z _r m 0.50 0.00 0.50 1.00 1.50 2.00	
rmin m 0 0 0 0 0 0 0 0 0 0	Modified cy rmax m 2.00 1.84 1.67 1.51 1.35 1.19 1.02	linder / ring ri_adjusted m 1.00 0.92 0.84 0.76 0.67 0.59 0.51	Y _{center} m 1.00 0.92 0.84 0.76 0.67 0.59 0.51	Fi - 0.0403 0.0193 0.0000 0.0130 0.0185 0.0185 0.0187 0.0161	Fi+1 - 0.0229 0.0000 0.0160 0.0233 0.0241 0.0215 0.0174	s - 1.00 0.92 0.84 0.76 0.67 0.59 0.51	S - 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Cylin X - 2.50 2.72 2.99 3.31 3.70 4.21 4.88	nder A - 7.25 8.40 9.91 11.93 14.72 18.74 24.81	Hi - 1.00 0.54 0.00 0.66 1.48 2.53 3.90	Hi+1 - 0.50 0.00 0.60 1.32 2.22 3.37 4.88	z _i -z _i m 1.00 0.50 0.00 0.50 1.00 1.50 2.00	z _{i+1} -z _r m 0.50 0.00 0.50 1.00 1.50 2.00 2.50	
rmin 0 0 0 0 0 0 0 0 0 0 0 0	Modified cy rmax m 2.00 1.84 1.67 1.51 1.51 1.19 1.02 0.86	linder / ring ri_adjusted m 1.00 0.92 0.84 0.76 0.67 0.67 0.59 0.51 0.43	Y _{center} m 1.00 0.92 0.84 0.76 0.67 0.59 0.51 0.43	Fi - 0.0403 0.0193 0.0000 0.0130 0.0185 0.0187 0.0161 0.0124	Fi+1 - 0.0229 0.0000 0.0160 0.0233 0.0241 0.0215 0.0174 0.0130	s 	S 	Cylin X - 2.50 2.72 2.99 3.31 3.70 4.21 4.88 5.80	A - 7.25 8.40 9.91 11.93 14.72 18.74 24.81 34.64	Hi - 1.00 0.54 0.00 0.66 1.48 2.53 3.90 5.80	Hi+1 - 0.50 0.00 0.60 1.32 2.22 3.37 4.88 6.96	z ₁ -z ₁ m 1.00 0.50 0.00 0.50 1.00 1.50 2.00 2.50	z _{i+1} -z _r m 0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00	
rmin 0 0 0 0 0 0 0 0 0 0 0 0 0	Modified cy rmax m 2.00 1.84 1.67 1.51 1.35 1.35 1.35 1.19 1.02 0.86 0.70	linder / ring ri_adjusted m 1.00 0.92 0.84 0.76 0.67 0.67 0.59 0.51 0.43 0.35	Y _{center} m 1.00 0.92 0.84 0.76 0.67 0.59 0.51 0.43 0.35	Fi - 0.0403 0.0193 0.0000 0.0130 0.0185 0.0187 0.0161 0.0124 0.0086	Fi+1 - 0.0229 0.0000 0.0160 0.0233 0.0241 0.0215 0.0174 0.0130 0.0089	s - 1.00 0.92 0.84 0.76 0.67 0.59 0.51 0.43 0.35	S - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	Cylin X - 2.50 2.72 2.99 3.31 3.70 4.21 4.88 5.80 7.15	A - 7.25 8.40 9.91 11.93 14.72 18.74 24.81 34.64 52.09	Hi - 1.00 0.54 0.00 0.66 1.48 2.53 3.90 5.80 8.58	Hi+1 - 0.50 0.00 0.60 1.32 2.22 3.37 4.88 6.96 10.01	z ₁ -z ₁ m 1.00 0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00	z _{i+1} -z _r m 0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50	
rmin 0 0 0 0 0 0 0 0 0 0 0 0 0	Modified cy rmax m 2.00 1.84 1.67 1.51 1.35 1.19 1.02 0.86 0.70 0.54	linder / ring ri_adjusted m 1.00 0.92 0.84 0.76 0.67 0.59 0.51 0.43 0.35 0.27	Y _{center} m 1.00 0.92 0.84 0.76 0.67 0.59 0.51 0.43 0.35 0.27	Fi - 0.0403 0.0193 0.0000 0.0130 0.0185 0.0185 0.0187 0.0161 0.0124 0.0086 0.0053	Fi+1 - 0.0229 0.0000 0.0160 0.0233 0.0241 0.0215 0.0174 0.0130 0.0089 0.0054	s - 1.00 0.92 0.84 0.76 0.67 0.59 0.51 0.43 0.35 0.27	S - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	Cylin X - 2.50 2.72 2.99 3.31 3.70 4.21 4.88 5.80 7.15 9.31	nder A - 7.25 8.40 9.91 11.93 14.72 18.74 24.81 34.64 52.09 87.70	Hi - 1.00 0.54 0.00 0.66 1.48 2.53 3.90 5.80 8.58 13.04	Hi+1 - 0.50 0.00 0.60 1.32 2.22 3.37 4.88 6.96 10.01 14.90	z ₁ -z ₁ m 1.00 0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50	z _{i+1} -z _r m 0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00	
rmin 0 0 0 0 0 0 0 0 0 0 0 0 0	Modified cy rmax m 2.00 1.84 1.67 1.51 1.35 1.19 1.02 0.86 0.70 0.54 0.37	linder / ring ri_adjusted m 1.00 0.92 0.84 0.76 0.67 0.59 0.51 0.43 0.35 0.27 0.19	Y _{center} m 1.00 0.92 0.84 0.76 0.67 0.59 0.51 0.43 0.35 0.27 0.19	Fi - 0.0403 0.0193 0.0000 0.0130 0.0185 0.0187 0.0161 0.0124 0.0086 0.0053 0.0026	Fi+1 - 0.0229 0.0000 0.0160 0.0233 0.0241 0.0215 0.0174 0.0130 0.0089 0.0054 0.0027	s - 1.00 0.92 0.84 0.76 0.67 0.59 0.51 0.43 0.35 0.27 0.19	S - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	Cylin X - 2.50 2.72 2.99 3.31 3.70 4.21 4.88 5.80 7.15 9.31 13.35	nder A - 7.25 8.40 9.91 11.93 14.72 18.74 24.81 34.64 52.09 87.70 179.33	Hi - 1.00 0.54 0.00 0.66 1.48 2.53 3.90 5.80 8.58 13.04 21.37	Hi+1 - 0.50 0.00 0.60 1.32 2.22 3.37 4.88 6.96 10.01 14.90 24.04	z _i -z _f m 1.00 0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00	z _{i+1} -z _r m 0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50	
rmin 0 0 0 0 0 0 0 0 0 0 0 0 0	Modified cy rmax m 2.00 1.84 1.67 1.51 1.35 1.19 1.02 0.86 0.70 0.54 0.37 0.21	linder / ring ri_adjusted m 1.00 0.92 0.84 0.76 0.67 0.59 0.51 0.43 0.35 0.27 0.19 0.11	Y _{center} m 1.00 0.92 0.84 0.76 0.67 0.59 0.51 0.43 0.35 0.27 0.19 0.11	Fi - 0.0403 0.0193 0.0000 0.0130 0.0185 0.0187 0.0161 0.0124 0.0086 0.0026 0.0009	Fi+1 - 0.0229 0.0000 0.0160 0.0233 0.0241 0.0215 0.0174 0.0130 0.0089 0.0054 0.0054 0.0027 0.0009	s 1.00 0.92 0.84 0.76 0.67 0.59 0.51 0.43 0.35 0.27 0.19 0.11	S 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Cylin X - 2.50 2.72 2.99 3.31 3.70 4.21 4.88 5.80 7.15 9.31 13.35 23.60	A 7.25 8.40 9.91 11.93 14.72 18.74 24.81 34.64 52.09 87.70 179.33 557.97	Hi - 1.00 0.54 0.00 0.66 1.48 2.53 3.90 5.80 8.58 13.04 21.37 42.48	Hi+1 - 0.50 0.00 0.60 1.32 2.22 3.37 4.88 6.96 10.01 14.90 24.04 47.20	z _i -z _r m 1.00 0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50	z _{i+1} -z _r m 0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00	
rmin 0 0 0 0 0 0 0 0 0 0 0 0 0	Modified cy rmax m 2.00 1.84 1.67 1.51 1.35 1.19 1.02 0.86 0.70 0.86 0.70 0.54 0.37 0.21 0.05	linder / ring ri_adjusted m 1.00 0.92 0.84 0.76 0.67 0.59 0.51 0.43 0.35 0.27 0.19 0.11 0.02	Y _{center} m 1.00 0.92 0.84 0.76 0.67 0.59 0.51 0.43 0.35 0.27 0.19 0.11 0.02	Fi - 0.0403 0.0193 0.0000 0.0130 0.0185 0.0187 0.0161 0.0124 0.0086 0.0053 0.0026 0.0009 0.0000	Fi+1 - 0.0229 0.0000 0.0160 0.0233 0.0241 0.0215 0.0174 0.0130 0.0089 0.0054 0.0054 0.0027 0.0009 0.0000	s 1.00 0.92 0.84 0.67 0.67 0.59 0.51 0.43 0.35 0.27 0.19 0.11 0.02	S 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Cylin X - 2.50 2.72 2.99 3.31 3.70 4.21 4.88 5.80 7.15 9.31 13.35 23.60 101.41	nder A 7.25 8.40 9.91 11.93 14.72 18.74 24.81 34.64 52.09 87.70 179.33 557.97 10285.43	Hi - 1.00 0.54 0.00 0.66 1.48 2.53 3.90 5.80 8.58 13.04 21.37 42.48 202.82	Hi+1 - 0.50 0.00 0.60 1.32 2.22 3.37 4.88 6.96 10.01 14.90 24.04 47.20 223.11	z ₁ -z ₁ m 1.00 0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00	z _{µ1} -z _r m 0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50	
rmin 0 0 0 0 0 0 0 0 0 0 0 0 0	Modified cy rmax m 2.00 1.84 1.67 1.51 1.35 1.19 1.02 0.86 0.70 0.54 0.37 0.21 0.05 0.05	linder / ring ri_adjusted m 1.00 0.92 0.84 0.67 0.59 0.51 0.43 0.35 0.27 0.19 0.11 0.02 0	Y _{center} m 1.00 0.92 0.84 0.76 0.67 0.59 0.51 0.43 0.35 0.27 0.19 0.11 0.02 0	Fi - 0.0403 0.0193 0.0000 0.0130 0.0135 0.0185 0.0187 0.0161 0.0124 0.0086 0.0053 0.0026 0.0009 0.0000 0	Fi+1 - 0.0229 0.0000 0.0160 0.0233 0.0241 0.0215 0.0174 0.0130 0.0089 0.0054 0.0027 0.0009 0.0000 0 0	s 1.00 0.92 0.84 0.76 0.67 0.59 0.51 0.43 0.35 0.27 0.19 0.11 0.02 0	S - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0 0	Cylin X 2.50 2.72 2.99 3.31 3.70 4.21 4.88 5.80 7.15 9.31 13.35 23.60 101.41 0	nder A 7.25 8.40 9.91 11.93 14.72 18.74 24.81 34.64 52.09 87.70 179.33 557.97 10285.43 0	Hi - 1.00 0.54 0.00 0.66 1.48 2.53 3.90 5.80 8.58 13.04 21.37 42.48 202.82 0	Hi+1 0.50 0.00 0.60 1.32 2.22 3.37 4.88 6.96 10.01 14.90 24.04 47.20 223.11 0	z _i -z _i m 1.00 0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50	z _{i+1} -z _r m 0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00	
rmin 0 0 0 0 0 0 0 0 0 0 0 0 0	Modified cy rmax m 2.00 1.84 1.67 1.35 1.19 1.02 0.86 0.70 0.54 0.37 0.21 0.05 0 0 0	linder / ring ri_adjusted m 1.00 0.92 0.84 0.76 0.67 0.59 0.51 0.43 0.35 0.27 0.19 0.11 0.02 0 0	Y _{center} m 1.00 0.92 0.84 0.76 0.67 0.59 0.51 0.43 0.35 0.27 0.19 0.11 0.02 0 0	Fi - 0.0403 0.0193 0.0000 0.0130 0.0185 0.0185 0.0187 0.0161 0.0124 0.0086 0.0053 0.0026 0.0009 0.0000 0 0 0	Fi+1 - 0.0229 0.0000 0.0160 0.0233 0.0241 0.0215 0.0174 0.0130 0.0089 0.0054 0.0027 0.0009 0.0000 0 0 0 0 0 0 0 0 0 0 0 0	s 	S - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0 0 0	Cylin X 2.50 2.72 2.99 3.31 3.70 4.21 4.88 5.80 7.15 9.31 13.35 23.60 101.41 0 0	nder A 7.25 8.40 9.91 11.93 14.72 18.74 24.81 34.64 52.09 87.70 179.33 557.97 10285.43 0 0	Hi - 1.00 0.54 0.00 0.66 1.48 2.53 3.90 5.80 8.58 13.04 21.37 42.48 202.82 0 0	Hi+1 - 0.50 0.00 0.60 1.32 2.22 3.37 4.88 6.96 10.01 14.90 24.04 47.20 223.11 0 0	z _i -z _i m 1.00 0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.50 6.00	z _{i+1} -z _r m 0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50	

🍠 Fire - Worked Exa	imple 1							
File Tools View	Help							
Compartment Fire:	⊚ Annex E (EN 1	991-1-2) 🔘 User De	fined Fire					
Localised Fire:	Localised Fire							
Number of fires:	1				Select fire: 1	•		
Fire	Diametre	Pos X	Pos Y			Time	RHR	*
	[m]	[m]	[m]			[min]	[MW]	
Fire 1	4	0	0		Point 1	0	12.56	E
Fire 2					Point 2	20	12.56	
Fire 3					Point 3			
Fire 4					Point 4			
Fire 5					Point 5			
		Geometrical Data			Point 6			
l y		Cailing Haight:		_	Point 7			
	_	Celling height.	10		Point 8			
	Fire	Distance on Axis (x):	2.5	m	Point 9			
		Height on Axis (z):	1	m	Point 10			
		noight on 7 via (2).			Point 11			
					Point 12			
					Point 13			
	_				Point 14			
					Point 15			
	x				Point 16			
					Point 17			
					Point 18			
					Point 19			
					Point 20			-
							ОК	Cancel

7.1. Exemplo 1: Fluxos de radiação sob incêndio localizado

🤧 Fire - Worked E	xample 1								📂 Heating - Worked Example 1				
									File Tools View Help				
File Tools View	v Help									Profile Heated By			
Compartment Fire:	Appent E (F	N 1991-1-2) @ Lleer D	lafinad Fira							Hot Zone Temperature		ISO 853 Fire Curv	ve
		(N 1331-1-2) O 0361 D	enneu me							Localised Fire Temperat	ure	ASTM E119 Fire	Curve
Localised Fire:	Localised I	Fire								Maximum Between Both		Hydrocarbon Fire	Curve
Number of fires:	1				Select fire: 1	•							
Fire	Diametre	Pos X	Pos Y			Time	RHR	A					
	[m]	[m]	[m]			[min]	[MW]						
Fire 1	4	0	0		Point 1	0	12.56		🤊 Steel Profile - Worked Example 1				
Fire 2					Point 2	20	12.56		File Tools View Help				
Fire 3					Point 3				Cross Section	Steel Profile			
Fire 4					Point 4				 Unprotected Cross Section 	Profile Type: HE		•	
Fire 5					Point 5				Protected Cross Section	Profile: HE 30) B	•	
		Geometrical Data			Point 6								
y y		Ceiling Height:	10	m	Point 7					Exposure			
	Erro	County Holgin.	IU		Point 8					 Exposed on Four Side 	s	Exposed on Three Side	es
	rite	Distance on Axis (x):	2.5	m	Point 9								
		Height on Axis (z):	1	m	Point 10					Encasement			
					Point 11					Ontour Encasement		Hollow Encasement	
					Point 12					Protection Material			
					Point 13					Catalan			
					Point 14					From Catalog			mm
					Point 15					Constant Values		Thickness:	
	x				Point 16					Temperature Depende	ent	Matenal Name: Spray Minera	i Hiber
					Point 1/					Temperature	Unit mass	Specific Heat	Conductivity
					Point 18					°C	kg/m ³	J/kgK 1200	W/mK
					Point 19						300	1200	0.12
					Point 20			T					
							OK	Cancel					
								Cancer					
No.													

Cancel

7.1. Exemplo 1: Fluxos de radiação sob incêndio localizado

Distribuição de temperatura em equilíbrio (LOCAFI)

Tubular 300x300x10

277°C to 291.6°C

262.4°C to 277°C

247.8°C to 262.4°C

em toda a secção

15

🤊 Fire - Worked Exa	ample 1b							
File Tools View	Help						🍠 Steel Te	emperature - Worked Example 1b
Compartment Fire:	Annex E (EN)	1991-1-2) 💿 User De	efined Fire				File Tool	ls View Help
Localised Fire:	Localised Fire							Steel Temperature
Number of fires:	1			Select fire:	1 •		0.40	
							240	
Fire	Diametre	Pos X	Pos Y		Time	RHR		
	[m]	[m]	[m]		[min]	[MW]		
Fire 1	4	0	0	Point 1	0	12.56		
Fire 2				Point 2	20	12.56	180	
Fire 3				Point 3				
Fire 4				Point 4			5	
Fire 5				Point 5			2	
		Geometrical Data		Point 6			e e	
У		Ceiling Height:	10 m	Point 9			- te 120	
	Fire	Distance on Axis (x);	25 m	Point 9			de la	
			2.5	Point 10			e e	
		Height on Axis (z):	3.5	Point 11				
				Point 12			-	
		E	1. 11.	Point 13			60	
		Exemp	010 1D	Point 14				
			_	Point 15				
	×	z = 3.	.5 m	Point 16				
	-			Point 17			0	
				Point 18			, ľ	0 10 20 30 40 50 60
				Point 19				Time [min]
				Point 20				
							Max:237	7 °C At: 60 min
						ОК		Print Close

7.1. Exemplo 1: Fluxos de radiação sob incêndio localizado

ile Lools View	Help							
Compartment Fire:	Appex E (EN 1991-1-2) 🦳 User Da	efined Fire					
Leastined Dire.			Shiriba Fire					
Localised Fire:	Localised	Fire						
Number of fires:	1				Select fire: 1	•		
Fire	Diametre	Pos X	Pos Y			Time	RHR	
	[m]	[m]	[m]			[min]	[MW]	
Fire 1	4	0	0		Point 1	0	12.56	E
Fire 2					Point 2	20	12.56	
Fire 3					Point 3			
Fire 4					Point 4			
Fire 5					Point 5			
		Geometrical Data			Point 6			
У		Ceiling Height:			Point 7			
	F	Colling Holght.	3.0		Point 8			
	Fire	Distance on Axis (x):	2.5	m	Point 9			
		Height on Axis (z):	3.5	m	Point 10			
					Point 11			
					Point 12			
					Point 13			
					Point 14			
					Point 15			
	×				Point 16			
					Point 17			
					Point 18			
					Point 19			
					Point 20			-

Exemplo 1c z = 3.5 m $z_{ceiling} = 3.5 m$

$$L_h = H\left(2.9Q_H^{0.33} - 1\right) = 4.54 m$$

7.1. Exemplo 1: Fluxos de radiação sob incêndio localizado

HASEMI (EN 1991-1-2 – Anexo C)

$$Q_D^* = \frac{Q}{1.11*10^6*D^{2.5}} = 0.3536$$

$$z' = 2.4*D*(Q_D^*{}^{2/5} - Q_D^*{}^{2/3}) = 1.535$$

$$y = \frac{r+H+z'}{L_h+H+z'} = 0.787$$

$$0.3 < y < 1 \rightarrow \dot{h} = 136300 - 121000 y$$

$$\rightarrow \dot{h} = 41073 W/m^2$$

7.1. Exemplo 1: Fluxos de radiação sob incêndio localizado Distribuição de temperatura em equilíbrio (HASEMI)

7.2. Exemplo 2: Coluna de um edifício de escritórios

Origem do incêndio localizada a 0.5 m da coluna Nível do teto: 3.5 m

Fonte de incêndio: 500 kg de papel (17.5 MJ/kg) numa área de 2.5m²

 $RHR_{max} = 1000 \ kW/m^2$

7.2. Exemplo 2: Coluna de um edifício de escritórios

Desenvolvimento do incêndio de acordo com o Anexo E da NP EN 1991-1-2:2010

- Fase de crescimento: $Q(t) = 10^{6*} (t/t_{\alpha})^2$
- Velocidade de desenvolvimento: Média \rightarrow RHR = 1 MW após t_{α} = 300 sec
- $RHR_{max} = 2.5m2 * 1000kW/m^2 = 2.5 MW$
- A fase de arrefecimento começa após 70% do combustível ter ardido

Compartment Fire: Localised Fire:	 Annex E (EN Localised Fir 	l 1991-1-2) 💿 User De e	fined Fire					
lumber of fires:	1				Select fire:	· · ·		
re	Diametre	Pos X	Pos Y			Time	RHR	
	[m]	[m]	[m]			[min]	[MW]	$P_{OC} \times (0.5m \pm 1.8m/2 - 1)$
e 1	1.8	1.4	0		Point 1	0	0	$105 \times 0.011 + 1.0111/2 - 1.5$
e 2					Point 2	1	0.05	
e 3					Point 3	2	0.15	
e 4					Point 4	3	0.35	
e 5					Point 5	4	0.625	
		Geometrical Data			Point 6	5	0.975	
y y		Compartment Height:	2.5		Point 7	6	1.425	
	_	compartment neight.	3.5		Point 8	7	1.925	
	Fire	Distance on Axis (x):	0	m	Point 9	8	2.5	
		Height on Axis (z):	2.5	m	Point 10	45	2.5	
					Point 11	45.5	2.5	1 Fogo (ϕ 1.8 m)
					Point 12	80	0	
					Point 13			
					Point 14			\rightarrow
					Point 15			
	x				Point 16			Λ X
					Point 17			
					Point 18			Espacamento: 50 cm
					Point 19			Lopaçamento. 50 cm
					Point 20			T

File Tools View	Help															
Compartment Fire: Localised Fire:	 Annex E (EN Localised Fire 	1991-1-2) 🔘 User De	fined Fire													
Number of fires:	1				Select fire:	1 •				2.0						
Fire	Diametre	Pos X	Pos Y			Time	RHR			3.0						
	[m]	[m]	[m]			[min]	[MW]									
Fire 1	1.8	1.4	0		Point 1	0	0	E		2.5						
Fire 2					Point 2	1	0.05									
Fire 3					Point 3	2	0.15			•						
Fire 4					Point 4	3	0.35			2.0						
Fire 5					Point 5	4	0.625		$\mathbf{\Sigma}$							
-		Geometrical Data			Point 6	5	0.975			15						
L IV		Company Usinki		_	Point 7	6	1.425			1.5						
	_	Compartment Height:	3.5	m	Point 8	7	1.925		~							
	Fire	Distance on Axis (x):	0	m	Point 9	8	2.5			1.0						
		Height on Axis (z):	2.5	m	Point 10	45	2.5									
		noight on y too (c).			Point 11	45.5	2.5		-						\mathbf{X}	
					Point 12	80	0			0.5						
					Point 13											
					FOINE 14					0.0						
					Point 15					0.0	-					
	×				Point 16						0	20	40	60	80	100
📫					Point 17											
					Point 18								Тетро	(min)		
					Point 19								- F -	× /		
					Point 20			-								

	Chaol Desfile				
Loss Section	Steel Profile				
Outprotected Cross Section	Profile <u>Type</u> : H	E-HL	•		
Protected Cross Section	Profile:	E 260 A	•		
	Exposure				
	Exposed on Four	Sides	C Expose	ed on Three Si	des
	Encasement				
	Ontour Encasem	ient	Hollow	Encasement	
	Protection Material				
	From Catalog				
	Constant Values		Thickness:	0	mm
	Temperature Dep	endent	Material <u>N</u> ame:	Spray Miner	al Fiber 🔻
	Temperature	Unit mass	Specific H	eat	Conductivity
	°C	kg/m³	J/kgK		W/mK
		0.00	1000		0.10

- Fluxo de calor por radiação máximo absorvido na camada de fumo
- Camada de fumo (z = 3.5m): a temperatura atinge 290°C
- No exterior da camada de fumo (z = 0.5m and z = 1m): ~250°C

7.3. Exemplo 3: Coluna de um parque de estacionamento

Coluna HEA 300

Nível do teto: 3.5 m

- 45 m Dimensões do lugar de estacionamento: 2.5m*5m
 - → Diâmetro equivalente do incêndio: 4 m
 - Cenário de incêndio: 3 carros + 1 carrinha (análise de risco – pressuposto altamente severo)

7.3. Exemplo 3: Coluna de um parque de estacionamento

7.3. Exemplo 3: Coluna de um parque de estacionamento

artment Fire:	Annex E (El	N 1991-1-2) 🛛 🔘 User De	efined Fire										
alised Fire:	Localised Fi	re											
mber of fires:	4				Select fire:	I •							
	Diametre	Pos X	Pos Y			Time	RHR		File Tools View Help				
·	[m]	[m]	[m]			[min]	IMWI		Cross Section	Steel Profile			
1	4	-1.25	-2.5		Point 1	0	0	=	Onprotected Cross Section Protected Cross Section	Profile Lype:	HE - HL		
2	4	1.25	-2.5		Point 2	1	2.4	-		Frome:	HE 300 A		
3	4	-1.25	2.5		Point 3	10	2.4			Exposure			
• 4	4	1.25	2.5		Point 4	16	5.5			Exposed on For	ur Sides	Exposed on Three	e Sides
5					Point 5	17	8.3						
		Geometrical Data			Point 6	19	4.5			Encasement			
I.V.				_	Point 7	30	1			Contour Encase	ement	Hollow Encaser	ent
,		Compartment Height:	3.5	m	Point 8	62	0			Protection Material			
	Fire	Distance on Axis (x):	0	m	Point 9	86	0			From Catalog			
			0.5		Point 10					Constant Value	s	Thickness: 0	mm
		Height on Axis (z):	0.0		Point 11					Temperature D	ependent	Material Name: Spray I	Aineral Fiber
	-				Point 12					Temperature	Unit mass	Specific Heat	Conductivity
					Point 13					°C	kg/m ³	J/kgK	W/mK
					Point 14						300	1200	0.12
					Point 15								
	×				Point 16								
					Point 17								
					Point 18								
					Point 19								ОК
I					Point 20			-					

OK

Cancel
7.3. Exemplo 3: Coluna de um parque de estacionamento

- Fora da camada de fumo (z = 1 m): t_{max} = 500°C
- Na camada de fumo (z = 3.5 m): $t_{max} = 718^{\circ}\text{C}$

7.4. Exemplo 4: Treliça de um edifício industrial

Secção dos banzos da treliça: HEA 220 Secção das diagonais da treliça: 2 L60*60*6 Distância entre dois pórticos: 10 m

Altura do cume: 14 m

Descrição da estrutura:

7.4. Exemplo 4: Treliça de um edifício industrial

Cenário de incêndio:

 \rightarrow Diâmetro equivalente: 8 m

Velocidade de desenvolvimento: Média

 \rightarrow RHR = 1 MW após t_{α} = 300 sec

 $RHR_{max} = 1000 \ kW/m^2 * 50m^2 = 50 \ MW$

Carga de incêndio: 10 To (celulosa)

 $\rightarrow Q = 17.5 \text{ MJ/kg} * 10000 \text{ kg} = 175000 \text{ MJ}$

7.4. Exemplo 4: Treliça de um edifício industrial

alised Fire:	Localised F	ìre								
nber of fires:	1				Select fire:	1 🔹				
	Diametre	Pos X	Pos Y			Time	RHR	~		
	[m]	[m]	[m]			[min]	[MW]			
	8	0	0		Point 1	0	0	=		
1					Point 2	2	0.15			
5					Point 3	4	0.65		60 -	1
ļ.					Point 4	6	1.45		00	
j					Point 5	8	2.55			
		- Geometrical Data			Point 6	10	4		50 -	
У			: 14	m	Point 7	12	5.75			
	Fire	Compartment Height: Distance on Axis (x): Height on Axis (z):			Point 8	14	7.8		40 -	
			5	m	Point 9	16	10.2		2	
			12.1	m	Point 10	18	12.9		Ξ ₂₀	
			12.1	Point 11	20	15.9		<u> </u>		
					Point 12	22	19.25		E	
					Point 13	24	22.9		6 20 -	
					Point 14	26	26.9			
					Point 15	28	31.2		10	
					Point 16	30	35.8		10 -	
	Î Î				Point 17	32	40.75			
					Point 18	34	46		0 <	
					Point 19	36	50		(С
1					Point 20	64	50	-		-

Tempo (min)

7.4. Exemplo 4: Treliça de um edifício industrial

Altura da chama = 9.7m

→ Os elementos da treliça estão localizados acima da chama sólida

Temperatura máxima das treliças = 210°C

7.4. Exemplo 4: Treliça de um edifício industrial

🤊 Fire - Worked Ex	ample 4							🍠 Steel Tempera	ture - Worked Example 4					
File Tools View	Help							File Tools Vie	ew Help					
Compartment Fire:	Annex E (EN	l 1991-1-2) 💿 User Def	fined Fire							Steel	Temperature	•		
Number of fires:	1	-		Select fire	: 1			120						
Fire	Diametre	Pos X	Pos Y		Time	RHR	•	100						
	[m]	[m]	[m]		[min]	[MW]		100						
Fire 1	8	0	0	Point 7	12	5.75								
Fire 2				Point 8	14	7.8	E							
Fire 3				Point 9	16	10.2		80						
Fire 4				Point 10	18	12.9		2					\mathbf{X}	
Fire 5				Point 11	20	15.9		e						
		Geometrical Data		Point 12	22	19.25		10 at at						
y y		Ceiling Height:	14	Point 13	24	22.9		le le						
	Dee	coming holght.	14	Point 14	26	26.9		Ĕ						
	Fire	Distance on Axis (x):	5	m Point 15	28	31.2		H H						
		Height on Axis (z);	10	m Point 16	30	35.8		40						
		2		Point 17	32	40.75								
				Point 18	34	46								
				Point 19	36	50		20						
				Point 20	64	50								
				Point 21	100	0								
	x			Point 22										
				Point 23				0	20	40	60	80	100	120
				Point 24										
				Point 25							l ime [min]			
				Point 26			T	Max:112.90	At: C5 min					
								Max. ITS C	AL COMIN					
						ОК	Cancel						Print	Close

7.4. Exemplo 4: Treliça de um edifício industrialFace 1Face 1

7.4. Exemplo 4: Treliça de um edifício industrial

7.5. Exemplo 5: Resistência à encurvadura de uma coluna

7.5. Exemplo 5: Resistência à encurvadura de uma coluna

Ações (para todos os pisos)

- Peso próprio G1:
 - ✓ Peso unitário da laje mista: 2.12 kN/m²
 - Elementos estruturais em aço: de acordo com as suas dimensões
- Carga permanente G2:
 - ✓ acabamentos, instalações, divisórias: 1.50 kN/m²
- Carga permanente G3:
 - ✓ Carga de revestimento das fachadas: 2.00 kN/m
- Valores característicos das cargas variáveis e fatores ψ

Тіро	Q _k	Ψ1	Ψ2	
Carga variável nos pisos	4.0 kN/m ²	0.7	0.6	
Neve na cobertura	1.7 kN/m²	0.2	0.0	

7.5. Exemplo 5: Resistência à encurvadura de uma coluna

Elementos estruturais

- Laje mista:
 - ✓ Espessura total: 12 cm
 - ✓ Chapa de aço perfilada: COFRAPLUS60
 - ✓ Espessura chapa de aço perfilada: 0.75 mm
 - ✓ Laje continua sobre 2 vãos
- Vigas secundárias comuns:
 - ✓ IPE360 S275
- Vigas internas principais:
 - ✓ HEA360 S275
- Colunas para o nível do solo:
 - ✓ Colunas de bordo (nível do solo): HEA300 S275
 - ✓ Colunas centrais (nível do solo): HEB300 S275

7.5. Exemplo 5: Resistência à encurvadura de uma coluna

Nota: dependendo do país deve adotar-se $\psi_{1,1}$ *ou* $\psi_{2,1}$.

principal

secundária

7.5. Exemplo 5: Resistência à encurvadura de uma coluna

Passo 1: Design mechanical action in fire

Condições de carga de cálculo total em situação de incêndio

 $N_{fi,d,t} = (307.9 + 3.9) \times 6 = 1870.8 \text{ kN}$

- Comprimento de encurvadura em situação de incêndio
 - base da coluna fixa

 $L_{fi} = 0.7L = 0.7 \times 3.4 = 2.38$ m

Carga crítica de Euler

$$N_{cr} = \frac{\pi^2 EI}{L_{cr}^2} = \frac{3.14^2 \times 210000 \times 8.563 \times 10^7}{2380^2} = 31332213 \text{ N}$$

7.5. Exemplo 5: Resistência à encurvadura de uma coluna

7.5. Exemplo 5: Resistência à encurvadura de uma coluna

Passo 3: Resistência de cálculo <u>no instante 0</u> (temperatura ambiente)

Resistência de cálculo no instante 0 (temperatura ambiente) de acordo com o Eurocódigo 3 parte 1-2

Esbelteza normalizada à temperatura normal

$$\bar{\lambda} = \sqrt{\frac{N_{Rk}}{N_{cr}}} = \sqrt{\frac{Af_y}{N_{cr}}} = \sqrt{\frac{14910 \times 275}{31332213}} = 0.362$$

Esbelteza a elevada temperatura

$$\overline{\lambda}_{\theta} = \overline{\lambda} \sqrt{\frac{k_{\mathrm{y},\theta}}{k_{\mathrm{E},\theta}}} = 0.361 \sqrt{\frac{1.0}{0.825}} = 0.399$$

Coeficiente de redução

$$\chi_{\rm fi} = \frac{1}{\varphi_{\theta} + \sqrt{\varphi_{\theta}^2 - \bar{\lambda}_{\theta}^2}} = \frac{1}{0.699 + \sqrt{0.699^2 - 0.398^2}} = 0.786$$

Resistência axial plástica

$$N_{\rm b,fi,t,Rd} = \chi_{\rm fi} A k_{\rm y,\theta} \frac{f_{\rm y}}{\gamma_{\rm M,fi}} = 0.786 \times \frac{14910}{1000} \times 1.0 \times \frac{275}{1.0} = 3223 \text{ kN}$$

HEB300				
A (cm ²)	149.08			
I_z (mm ⁴)	8.56			

7.5. Exemplo 5: Resistência à encurvadura de uma coluna

Passo 4: Grau de utilização para dados tabelados

$$\mu_0 = \frac{N_{fi,d,t}}{N_{pl,fi,0}} = 0.452$$

Passo 5: Temperatura crítica

Interpolação linear de dados tabelados $\overline{\lambda}_{fi,0} = 0.362$

